Compute Beta Distribution in R Programming – dbeta(), pbeta(), qbeta(), and rbeta() Functions
Beta Distribution in R Language is defined as property which represents the possible values of probability. This article is an illustration of dbeta, pbeta, qbeta, and rbeta functions of Beta Distribution.
dbeta() Function
It is defined as Beta Density function and is used to create beta density value corresponding to the vector of quantiles.
Syntax: dbeta(vec, shape1, shape2) Parameter: vec: Vector to be used shape1, shape2: beta density of input values Returns: beta density values for a vector of quantiles
Example :
r
# R program to illustrate the use of # dbeta() function # Creating a vector x_beta <- seq (0, 1.5, by = 0.025 ) # Apply beta function y_beta <- dbeta (x_beta, shape1 = 2, shape2 = 4.5) # Plot beta values plot (y_beta) |
Output:
pbeta() Function
It is used to create cumulative distribution function of the beta distribution.
Syntax: pbeta(vec, shape1, shape2) Parameter: vec: Vector to be used shape1, shape2: beta density of input values
Example:
r
# Specify x-values for pbeta function x_pbeta <- seq (0, 1, by = 0.025) # Apply pbeta() function y_pbeta <- pbeta (x_pbeta, shape1 = 1, shape2 = 4) # Plot pbeta values plot (y_pbeta) |
Output:
qbeta() Function
It is known as beta quantile function and used to return quantile values of the function.
Syntax: qbeta(vec, shape1, shape2) Parameters: vec: Vector to be used shape1, shape2: beta density of input values
Example:
r
# Specify x-values for qbeta() function x_qbeta <- seq (0, 1, by = 0.025) # Apply qbeta() function y_qbeta <- qbeta (x_qbeta, shape1 = 1, shape2 = 4) # Plot qbeta() values plot (y_qbeta) |
Output:
rbeta() Function
It is defined as a random number generator that is used to set seed and specify sample size.
Syntax: rbeta(N, shape1, shape2 ) Parameters: vec: Vector to be used shape1, shape2: beta density of input values
Example:
r
# Set seed for reproducibility set.seed (13579) # Specify sample size N <- 10000 # Draw N beta distributed values y_rbeta <- rbeta (N, shape1 = 1, shape2 = 5) y_rbeta # Plot of randomly drawn beta density plot ( density (y_rbeta), main = "beta Distribution in R") |
Output:
Please Login to comment...