Skip to content
Related Articles

Related Articles

Combining multiple columns in Pandas groupby with dictionary

View Discussion
Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 27 Oct, 2021

Let’ see how to combine multiple columns in Pandas using groupby with dictionary with the help of different examples.

Example #1:




# importing pandas as pd 
import pandas as pd 
  
# Creating a dictionary 
d = {'id':['1', '2', '3'],
     'Column 1.1':[14, 15, 16],
     'Column 1.2':[10, 10, 10],
     'Column 1.3':[1, 4, 5],
     'Column 2.1':[1, 2, 3],
     'Column 2.2':[10, 10, 10], }
  
# Converting dictionary into a data-frame 
df = pd.DataFrame(d)
print(df)


Output:




# Creating the groupby dictionary 
groupby_dict = {'Column 1.1':'Column 1',
                'Column 1.2':'Column 1',
                'Column 1.3':'Column 1',
                'Column 2.1':'Column 2',
                'Column 2.2':'Column 2' }
  
# Set the index of df as Column 'id'
df = df.set_index('id')
  
# Groupby the groupby_dict created above 
df = df.groupby(groupby_dict, axis = 1).min()
print(df)


Output:

Explanation

  • Here we have grouped Column 1.1, Column 1.2 and Column 1.3 into Column 1 and Column 2.1, Column 2.2 into Column 2.
  • Notice that the output in each column is the min value of each row of the columns grouped together. i.e in Column 1, value of first row is the minimum value of Column 1.1 Row 1, Column 1.2 Row 1 and Column 1.3 Row 1.

 
Example #2:




# importing pandas as pd 
import pandas as pd 
  
# Create dictionary with data 
dict = {
    "ID":[1, 2, 3],
    "Movies":["The Godfather", "Fight Club", "Casablanca"],
    "Week_1_Viewers":[30, 30, 40],
    "Week_2_Viewers":[60, 40, 80],
    "Week_3_Viewers":[40, 20, 20] };
  
# Convert dictionary to dataframe
df = pd.DataFrame(dict);
print(df)


Output:




# Create the groupby_dict 
groupby_dict = {"Week_1_Viewers":"Total_Viewers",
           "Week_2_Viewers":"Total_Viewers",
           "Week_3_Viewers":"Total_Viewers",
           "Movies":"Movies" }
  
df = df.set_index('ID')
df = df.groupby(groupby_dict, axis = 1).sum()
print(df)


Output:

Explanation:

  • Here, notice that even though ‘Movies’ isn’t being merged into another column it still has to be present in the groupby_dict, else it won’t be in the final dataframe.
  • To calculate the Total_Viewers we have used the .sum() function which sums up all the values of the respective rows.

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!