Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Class 9 RD Sharma Solutions – Chapter 6 Factorisation of Polynomials- Exercise 6.3

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In each of the following using the remainder theorem, find the reminder when f(x) is divided by g(x)and verify by actual division:(1-8)

Question 1. f(x) = x3+4x2-3x+10, g(x) = x+4

Solution:

Given:f(x)=x3+4x2-3x+10, g(x)=x+4

from, the remainder theorem when f(x) is divided by g(x) =x-(-4) the remainder will be equal to f(-4).

Let, g(x)=0

⇒ x+4=0

⇒ x = -4

Substitute the value of x in f(x)

f(-4)=(-4)3+4(-4)2-3(-4)+10

= -64+(4*16)+12+10

= -64 +64 +12+10

= 22

Therefore, the remainder is 22.

Question 2. f(x)=4x4-3x3-2x2+x-7, g(x) =x-1

Solution:

Given:f(x)= 4x4-3x3-2x2+x-7, g(x)=x-1

from, the remainder theorem when f(x) is divided by g(x) = x-(1) the remainder will be equal to f(1)

Let, g(x)=0

⇒ x-1=0

⇒ x=1

Substitute the value of x in f(x)

f(1)= 4(1)4-3(1)3-2(1)2+1-7

= 4-3-2+1-7

= 5-12

= -7

Therefore, the reminder is 7.

Question 3. f(x)=2x4-6x3+2x2-x+2, g(x)=x+2

Solution:

Given: f(x)=2x4-6x3+2x2-x+2, g(x)=x+2

from, the remainder theorem when f(x) is divided by g(x) = x-(-2) the remainder will be equal to f(-2)

Let, g(x)=0

⇒ x+2=0

⇒ x=-2

Substitute the value of x in f(x)

f(-2)=2(-2)4-6(-2)3+2(-2)2-(-2)+2

= (2*16)-(6*(-8))+(2*4)+2+2

= 32+48+8+2+2

= 92

Therefore, the reminder is 92.

Question 4. f(x)=4x3-12x2+14x-3, g(x)=2x-1

Solution:

Given:f(x)=4x3-12x2+14x-3, g(x)=2x-1

from, the remainder theorem when f(x) is divided by g(x) = 2(x-1/2) the remainder will be equal to f(1\2)

Let, g(x)=0

⇒ 2x-1=0

⇒ x=-1/2

Substitute the value of x in f(x)

f(\frac12)=4(\frac12)^3-12(\frac12)^2+14(\frac12)-3

=4(\frac18)-12(\frac14)+4(\frac12)-3

=\frac12 -3 +7-3

=\frac12+1

=\frac32

Therefore, the reminder is\frac32

Question 5. f(x)=x3-6x2+2x-4, g(x)=1-2x

Solution:

Given:f(x)=x3-6x2+2x-4, g(x)=1-2x

from, the remainder theorem when f(x) is divided by g(x) = -2(x-1/2) the remainder will be equal to f(1\2)

Let, g(x)=0

⇒ 1-2x=0

⇒ x=1/2

substitute the value of x in f(x)

f(\frac12)=(\frac12)^3-6(\frac12)^2+2(\frac12)-4

=\frac18-8(\frac14)+2(\frac12)-4

=\frac18-(\frac12)+1-4

=\frac18-\frac12-3

Taking L.C.M

=\frac{1-4+8-32}{8}

=\frac{1-36}8

=\frac{-35}{8}

Therefore, the remainder is\frac{-35}{8}

Question 6. f(x)=x4-3x2+4, g(x)=x-2

Solution:

Given:f(x)=x4-3x2+4, g(x)=x-2

from, the remainder theorem when f(x) is divided by g(x) = x-(2) the remainder will be equal to f(2)

Let, g(x)=0

⇒ x-2=0

⇒ x=2

Substitute the value of x in f(x)

f(2)=24-3(2)2+4

= 16-3(4) + 4

= 16 – 12 + 4

= 20 – 12

= 8

Therefore, the remainder is 8

Question 7. f(x)=9x3-3x2+x-5, g(x)=x-\frac23

Solution:

Given:f(x)=9x3-3x2+x-5, g(x)=x-\frac23

from, the remainder theorem when f(x) is divided by g(x) = x-(\frac23 ) the remainder will be equal to f(\frac23 )

Let, g(x)=0

⇒ x-2/3=0

⇒ x=2/3

substitute the value of x in f(x)

f(\frac23)=9(\frac23)^3-3(\frac23)^2+(\frac23)-5

=9(\frac{8}{27})-3(\frac49)+\frac23-5

=\frac83-\frac43+\frac23-5

=\frac{10-19}{3}

= -3

Therefore, the remainder is -3

Question 8. f(x) =3x^4+2x^3-\frac{x^3}{3}-\frac{x}{9}+\frac{2}{27} , g(x) =x+\frac23

Solution:

Given:f(x)=3x^4+2x^3-\frac{x^3}{3}-\frac{x}{9}+\frac{2}{27} ,g(x)=x+\frac23

from, the remainder theorem when f(x) is divided by g(x) = x-(-\frac23) the remainder will be equal to f(-\frac23 )

substitute the value of x in f(x)

f(-\frac23)=3(-\frac23)^4+2(-\frac23)^3- \frac{(-\frac23)^3}{3}-\frac{-\frac{2}{3}}{9}+ \frac{2}{27}

=\frac{16}{27} -\frac{16}{27}-\frac{4}{27}+\frac{2}{27}+\frac{2}{27}

=\frac{4}{27}-\frac{4}{27}

= 0

Therefore, the remainder is 0

Question 9. If the polynomial2x3+ax2+3x-5 andx3+x2-4x+a leave the same reminder when divided by x-2, Find the value of a .

Solution:

Given:f(x)=2x3+ax2+3x-5,p(x)=x3+x2-4x+a

The remainder are f(2) and p(2) when f(x) and p(x) are divided by x-2

We know that,

f(2) = p(2) (given in problem)

we need to calculate f(2) and p(2)

for, f(2)

substitute (x=2) in f(x)

f(2)=2(2)3+a(2)2+3(2)-5

= 16+4a+1

= 4a+17 ———- 1

for, p(2)

Substitute (x=2) in p(x)

p(2)=23+22-4(2)+a

= 8+4-8+a

= 4+a ———– 2

Since, f(2) = p(2)

Equate eq1 and eq2

⇒ 4a+17 = 4+a

⇒ 3a = -13

⇒ a = -13/3

The value of a = -13/3

Question 10. If the polynomialsax3+3x2-3 and2x3-5x+a when divided by (x-4) leave the reminders as R1 and R2 respectively. Find the values of a in each of the following cases, if

1. R1 = R2

2. R1+R2=0

3. 2R1-R2=0

Solution:

The polynomials are f(x)=ax3+3x2-3,p(x)=2x3-5x+a

let,

R1 is the reminder when f(x) is divided by x-4

⇒ R1=f(4)

⇒ R1=a(4)3 + 3(4)2 -3

= 64a + 48 – 3

= 64a + 45 —————– 1

Now, let

R2 is the reminder when p(x) is divided by x-4

⇒ R2=p(4)

⇒ R2=2(4)3-5(4)+a

= 128-20+a

= 108 +a ——————— 2

1. Given, R1 = R2

⇒ 64a + 45 = 108 +a

⇒ 63a=63

⇒ a =1

2. Given, R1+R2 =0

⇒ 64a + 45 + 108 +a = 0

⇒ 65a + 153 = 0

⇒ a = -153/65

3. Given, 2R1-R2 =0

⇒2( 64a + 45)- (108 +a) =0

⇒ 128a + 90 – 108 -a =0

⇒ 127a – 18 =0

⇒ a =\frac{18}{127}

Question 11. If the polynomialsax3+3x2-13 and2x3-5x+a when divided by (x-2) leave the same reminder, find the value of a.

Solution:

Given:f(x)=ax3+3x2-13,p(x)=2x3-5x+a

Equate x-2 to zero

⇒ x=2

Substitute the value of x in f(x) and p(x)

f(2)=a(2)3+3(2)2-13

= 8a+12-13

= 8a-1 ————– 1

p(2)=2(2)3-5(2)+a

= 16-10+a

= 6 + a ————- 2

f(2) = p(2)

⇒ 8a-1 = 6+a

⇒ 7a = 7

⇒ a =1

The value of a is 1

Question 12. Find the reminder whenf(x)=(x)3+3(x)2+3(x)+1 is divided by,

1. x+1

2. x – 1/2

3. x

4. x+π

5. 5+2x

Solution:

Given:f(x)=x3+3x2+3x+1

by reminder theorem

1. x+1 = 0

x=-1

Substitute the value of x in f(x)

f(-1)=(-1)3+3(-1)2+3(-1)+1

= -1+3-3+1

=0

2. x-1/2 =0

x = 1/2

Substitute the value of x in f(x)

f(\frac12)=(\frac12)^3+3(\frac12)^2+3(\frac12)+1

=\frac18+3(\frac12)^2+3(\frac12)+1

=\frac{1+6+12+8}{8}

=\frac{27}8

3. x = 0

Substitute the value of x in f(x)

f(0)=(0)3+3(0)2+3(0)+1

= 0 + 0+0+1

= 1

4. x+π =0

x = -π

Substitute the value of x in f(x)

f(-π)=(-π)3+3(-π)2+3(-π)+1

=-π3+3π2-3π +1

5. 5+2x =0

x = -5/2

Substitute the value of x in f(x)

f(-\frac52 )=(-\frac52 )^3+3(-\frac52 )^2+3(-\frac52 )+1

=\frac{-125}{8}+3\frac{25}{4}+3\frac{-5}{2}+1

Taking L.C.M

=\frac{-125+150-50+8}{8}

=\frac{-27}{8}


My Personal Notes arrow_drop_up
Last Updated : 11 Feb, 2021
Like Article
Save Article
Similar Reads
Related Tutorials