Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Class 9 RD Sharma Solutions – Chapter 24 Measures of Central Tendency – Exercise 24.2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Question 1. Calculate the mean for the following distribution:

x: 5 6 7 8 9
f: 4 8 11 14 3

Solution:

x f fx
5 4 20
6 8 48
7 14 98
8 11 88
9 3 27
  N = 40 \sum f_x = 281

Now, mean = \overline{x} = \frac{\sum f_x}{N}

= 281/40

= 7.025

Question 2. Calculate the mean for the following distribution:

x: 19 21 23 25 27 29 31
f: 13 15 16 18 16 15 13

Solution:

x f fx
19 13 247
21 15 315
23 16 368
25 18 450
27 16 432
29 15 435
31 13 403
  N = 106 \sum f_x = 2650

Now, mean = \overline{x} = \frac{\sum f_x}{N}

= 2650/106

= 25

Question 3. The mean of the following data is 20.6. Find the value of p.

x: 10 15 p 25 35
f: 3 10 25 7 5

Solution: 

x f fx
10 3 30
15 10 150
p 25 25p
25 7 175
35 5 175
  N = 50 \sum f_x = 25p + 530

Now, mean = \overline{x} = \frac{\sum f_x}{N}

= (25p + 530)/50

Given,

Mean = 20.6 

Solving, we get,

20.6 = (25p + 530)/50

25p + 530 = 1030

25p = 1030 − 530 = 500

that is, p = 20

Question 4. If the mean of the following data is 15, find p.

x: 5 10 15 20 25
f: 6 10 5

Solution: 

x f fx
5 6 30
10 p 10p
15 6 90
20 10 200
25 5 125
  N = p+27 \sum f_x=10p+445

Mean = \overline{x} = \frac{\sum f_x}{N}

= (10p + 445)/(p + 27)

Give,

Mean = 15

Solving, (10p + 445)/(p + 27) = 15

10p + 445 = 15(p + 27)

10p – 15p = 405 – 445 = -40

-5p = -40

that is, p = 8

Question 5. Find the value of p for the following distribution whose mean is 16.6.

x: 8 12 15 p 20 25 30
f: 12 16 20 24 16 8 4

Solution: 

x f fx
8 12 96
12 16 192
15 20 300
p 24 24p
20 16 320
25 8 200
30 4 120
  N = 100 \sum f_x = 24p + 1228

Now, mean = \overline{x} = \frac{\sum f_x}{N}

= (24p + 1228)/100

Given,

Mean = 16.6 

Solving, (24p + 1228)/100 = 16.6

24p + 1228 = 1660

24p = 1660 – 1228 = 432

p = 432/24 

= 18

Question 6. Find the missing value of p for the following distribution whose mean is 12.58.

x: 5 8 10 12 p 20 25
f: 2 5 8 22 7 4 2

Solution:

x f fx
5 2 10
8 5 40
10 8 80
12 22 264
p 7 7p
20 4 80
25 2 50
  N = 50 \sum f_x = 7p + 524

Mean = \overline{x} = \frac{\sum f_x}{N}

= (7p + 524)/50

Given, 

Mean = 12.58 

Solving, (7p + 524)/50 = 12.58

7p + 524 = 12.58 x 50

7p + 524 = 629

7p = 629 – 524 = 105

p = 105/7 

= 15

Question 7. Find the missing frequency (p) for the following distribution whose mean is 7.68.

x: 3 5 7 9 11 13
f: 6 8 15 p 8 4

Solution: 

x f fx
3 6 18
5 8 40
7 15 105
9 p 9p
11 8 88
13 4 52
  N = p +41 \sum f_x = 9p+303

Mean = \overline{x} = \frac{\sum f_x}{N}

= (9p + 303)/(p+41)

Given,

Mean = 7.68

Solving we get, (9p + 303)/(p+41) = 7.68

9p + 303 = 7.68 (p + 41)

9p + 303 = 7.68p + 314.88

9p − 7.68p = 314.88 − 303

1.32p = 11.88

that is, p = (11.881)/(1.32) = 9

Question 8. Find the missing value of p for the following distribution whose mean is 12.58.

x: 5 8 10 12 p 20 25
f: 2 5 8 22 7 4 2

Solution:

x f fx
5 2 10
8 5 40
10 8 80
12 22 264
p 7 7p
20 4 80
25 2 50
  N = 50 \sum f_x =7p + 524

Given,

Mean = 12.58

=> 7p + 524/50 = 12.58

=> 7p + 524 = 629

=> 7p = 629 – 524

Solving for p, we get, 

=> 7p = 105

that is, p = 105/7 = 15

Question 9. Find the missing frequency (p) for the following distribution whose mean is 7.68.

x: 3 5 7 9 11 13
f: 6 8 15 p 8 4

Solution:

x f fx
3 6 18
5 8 40
7 15 105
9 p 9p
11 8 88
13 4 52
  N = p + 41 \sum f_x =9p + 303

Mean = \overline{x} = \frac{\sum f_x}{N}

Given, 

Mean = 7.68

Now, 

9p + 303/ (p +41) = 7.68

Solving, we get, 

9p + 303 = 7.68 + 314.88

9p-7.68p = 314.88 – 303

1.32p = 11.88

p = 9

Question 10. Find the value of p, if the mean of the following distribution is 20.

x: 15 17 19 20+p 23
f: 2 3 4 5p 6

Solution:

x f fx
15 2 30
17 3 51
19 4 76
20+p 5p 100p+5p2
23 6 138
  N = 15+5p \sum f_x = 295+100p+5p^2

Given,

Mean = 20

Mean = \overline{x} = \frac{\sum f_x}{N}

\frac{295+100p+5p^2}{15+5p}=20 \\ 295 + 100p + 5p^2 = 300+100p \\ 295 + 100p + 5p^2 - 300 - 100p = 0 \\ 5p^2 - 5 =0 \\ p^2 -1 =0 \\(p+1)(p-1) = 0

If p+1 = 0 or p-1 =0

p=-1

Question 11. Candidates of four schools appear in a mathematics test. The data were as follows:

Schools No. of Candidates Average Score
I 60 75
II 48 80
III Not available 55
IV 40 50

If the average score of the candidates of all the four schools is 66, find the number of candidates that appeared from school III.

Solution:

Let us assume the number of candidates in school III to be p.

Therefore,

Total number of candidates in all the four schools = 60 + 48 + p + 40 = 148 + p

Average score of four schools = 66

∴Computing total score of the candidates = (148 + p) x 66

Now,

 The mean score of 60 in school I is equivalent to 75 .

Total in school I = 60 x 75 = 4500

The mean score of 48 in school II is equivalent to 80 .

Total in school II = 48 x 80 = 3840

In school III, mean of p = 55

Total in school III= 55 x p = 55p

and in school IV, mean of 40 = 50

Total in school IV = 40 x 50 = 2000

Since, total of the candidates is 148+p.

Also,

Total score = 4500 + 3840 + 55p + 2000 = 10340 + 55p

∴10340 + 55p = (148 + p) x 66 = 9768 + 66p

=> 10340 – 9768 = 66p – 55p

=> 572 = 11p

∴ p = 572/11

Therefore,

The number of candidates in school III = 52

Question 12. Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.

x: 10 30 50 70 90  
f: 17 f1 32 f2 19 Total = 120

Solution:

x f fx
10 17 170
30 f1 30f1
50 32 1600
70 f2 70f2
90 19 1710
  N = 120 \sum f_x = 3480+30f_1 + 70f_2

Given,

Mean = 50

\frac{\sum f_x}{N} = 50 \\ \frac{30f_1 + 70f_2 + 3480}{120} = 50 \\ 30f_1 + 70f_2 + 3480 = 6000 \\ 30f_1 + 70f_2 = 6000- 3480 \\ 30f_1 + 70f_2 = 2520 \\ 3f_! + 7f_2 = 252 ....(i)

And, given value of N = 120

 17 + f_1 + 32+ f_2 + 19 = 120 \\ 68 + f_1 + f_2 = 120 \\ f_1 + f_2 = 52 \\ 3f_1+3f_2 = 156 ......(ii)

Subtracting (ii) from (i) ,

3f_1+7f_2-3f_1-3f_2 = 252-156 \\ 4f_2 = 96 \\ f_2 = 24

Substituting f2  in (i)

3f_1 + 168 = 252 \\ 3f_1 = 252-168 = 84 \\ f_1 = 28


My Personal Notes arrow_drop_up
Last Updated : 18 Mar, 2021
Like Article
Save Article
Similar Reads
Related Tutorials