Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Class 8 RD Sharma Solutions – Chapter 7 Factorization – Exercise 7.9

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Factorize each of the following quadratic polynomials by using the method of completing the square

Question 1. p2 + 6p + 8

Solution:

p2 + 6p + 8

= p2 + 2 x p x 3 + 32 – 32 + 8   (completing the square)

= (p2 + 6p + 32) – 1

= (p + 3)2 – 1

= (p + 3)2 – (1)2       { ∵ a2 + b2  = (a + b) (a – b)}

= (p + 3 + 1) (p + 3 – 1)

= (p + 4) (p + 2)

Question 2. q2 – 10q + 21

Solution:

q2 – 10q + 21

= (q)2 – 2 x q x 5 + (5)2 – (5)2 + 21   (completing the square)

= (q)2 – 2 x q x 5 + (5)2 – 25+ 21

= (q)2 – 2 x q x 5 + (5)2 – 25 +21

= (q)2 – 2 x q x 5 + (5)2 – 4

= (q – 5)2 – (2)     {∵ a2 – b2 = (a + b) (a – b)}

= (q – 5 + 2) (q – 5 – 2)

=(q – 3) (q – 7)

Question 3. 4y2 + 12y + 5

Solution:

4y2 + 12y + 5

= (2y)2 + 2 x 2y x 3 + (3)2 – (3)2 + 5    (completing the square)

= (2y + 3)2 – 9 + 5

= (2y + 3)2 – 4

= (2y + 3)2 – (2)2   {∵ a2 – b2 = (a + b) (a – b)}

= (2y + 3 + 2) (2y + 3 – 2)

= (2y + 5) (2y + 1)

Question 4. p2 + 6p – 16

Solution:

p2 + 6p – 16

= (p)2 + 2 x  p x 3 + (3)2 – (3)2 – 16    (completing the square)

= (p)2 + 2 x p x 3 + (3)2 – 9 – 16

= (p + 3)2 – 25

= (p + 3)2 – (5)2     {∵ a2 – b2 = {a + b) (a – b)}

= (p + 3 + 5)(p + 3 – 5)

= (p + 8) (p – 2)

Question 5. x2 + 12x + 20

Solution:

x2 + 12x + 20

= (x)2 + 2 x x x 6 + (6)2 – (6)2 + 20   (completing the square)

= (x)2 + 2 x x x 6 + (6)2 -36 + 20

= (x + 6)2 -16

= (x + 6)2 – (4)2   {∵ a2 – b2 = (a + b) (a – b)}

= (x + 6 + 4) (x + 6 – 4)

= (x + 10) (x + 2)

Question 6. a2 – 14a – 51

Solution:

a2 – 14a – 51

= (a)2 – 2 x a x 7 + (7)2 – (7)2 – 51       (completing the square)

= (a)2 – 2 x a x 7 + (7)2 – 49 – 51

= (a – 7)2 – 100

= (a – 7)2 – (10)2    {∵  a2 – b2 = (a + b) (a – b)}

= (a – 7 + 10) (a – 7 – 10)

= (a + 3) (a – 17)

Question 7. a2 + 2a – 3

Solution:

a2 + 2a – 3

= (a)2 + 2 x a x 1 + (1)2 – (1)2 – 3   (completing the square)

= (a)2 + 2 x a x 1 + (1)2 – 1 – 3

= (a + 1)2 – 4

= (a + 1)2 – (2)2 {∵ a2 – b2 = (a + b) (a – b)}

= (a + 1 + 2) (a + 1 – 2)

= (a + 3) (a – 1)

Question 8. 4x2 – 12x + 5

Solution:

4x2 – 12x + 5

= (2x)2 – 2 x 2x x 3 + (3)2 – (3)2 + 5  (completing the square)

= (2x)2 – 2 x 2x x 3 + (3)2 – 9 + 5

= (2x – 3)2 – 4

= (2x – 3)2 – (2)2      {∵ a2 – b2 = (a + b) (a – b)}

= (2x – 3 + 2) (2x – 3 – 2)

= (2x – 1) (2x – 5)

Question 9. y2 – 7y + 12

Solution:

y2 – 7y + 12 

= (y)2 – 2 × y ×  7/2 + (7/2)2 – (7/2)2 + 12      (completing the square)

= (y)2 – 2 × y × 7/2 + 49/4 – 49/4 + 12

= (y – 7/2)2 – (49 – 48)/4 

= (y – 7/2)2 – 1/4

= (y – 7/2)2 – (1/2)2         {∵ a2 – b2 = (a + b) (a – b)}

= (y – 7/2 + 1/2) (y – 7/2 – 1/2)

= (y – 6/2)  (y – 8/2) 

= (y – 3) (y – 4)

Question 10. z2 – 4z -12

Solution:

z2 – 4z – 12

= (z)2 – 2 x z x 2 + (2)2 – (2)2 – 12  (completing the square)

= (z)2 – 2 x z x 2 + (2)2 – 4 – 12

= (z – 2)2 – 16

= (z – 2)2– (4)2   {∵ a2 – b2 = (a + b) (a – b)}

= (z – 2 + 4) (z – 2 – 4)

= (z + 2)(z – 6)

My Personal Notes arrow_drop_up
Last Updated : 01 Dec, 2020
Like Article
Save Article
Similar Reads
Related Tutorials