Skip to content
Related Articles
Open in App
Not now

Related Articles

Class 11 RD Sharma Solutions – Chapter 30 Derivatives – Exercise 30.4 | Set 3

Improve Article
Save Article
Like Article
  • Last Updated : 16 May, 2021
Improve Article
Save Article
Like Article

Question 21. Differentiate (2x2 – 3) sin x with respect to x.

Solution:

We have,

=> y = (2x2 – 3) sin x

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[(2x^2 - 3) sin x]

On using product rule we get,

sinx\frac{d}{dx}(2x^2 - 3)+(2x^2 - 3)\frac{d}{dx}(sinx)

sinx(4x)+(2x^2-3)cosx

4xsinx+2x^2cosx-3cosx

Question 22. Differentiate x^5(3-6x^{-9}) with respect to x.

Solution:

We have,

=> y = x^5(3-6x^{-9})

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[x^5(3-6x^{-9})]

On using product rule we get,

(3-6x^{-9})\frac{d}{dx}(x^5)+(x^5)\frac{d}{dx}(3-6x^{-9})

(3-6x^{-9})(5x^4)+(x^5)[-(6)(-9)x^{-10}]

(3-6x^{-9})(5x^4)+(x^5)(54x^{-10})

15x^4-30x^5+54x^{-5}

Question 23. Differentiate x^{-4}(3-4x^{-5}) with respect to x.

Solution:

We have, 

=> y = x^{-4}(3-4x^{-5})

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[x^{-4}(3-4x^{-5})]

On using product rule we get,

(3-4x^{-5})\frac{d}{dx}(x^{-4})+x^{-4}\frac{d}{dx}(3-4x^{-5})

(3-4x^{-5})(-4x^{-5})+x^{-4}[-(4)(-5)x^{-6}]

(3-4x^{-5})(-4x^{-5})+x^{-4}[20x^{-6}]

-12x^{-5}+16x^{-10}+20x^{-10}

-12x^{-5}+36x^{-10}

-12x^{-5}(1+3x^{-5})

Question 24. Differentiate x^{-3}(5+3x) with respect to x.

Solution:

We have,

=> y = x^{-3}(5+3x)

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[x^{-3}(5+3x)]

On using product rule we get, 

(5+3x)\frac{d}{dx}(x^{-3})+x^{-3}\frac{d}{dx}(5+3x)

(5+3x)(-3x^{-4})+x^{-3}(3)

-15x^{-4}-9x^{-3}+3x^{-3}

-15x^{-4}-6x^{-3}

-3x^{-3}(5x^{-1}-2)

Question 25. Differentiate \frac{ax+b}{cx+d} with respect to x.

Solution:

We have, 

=> y = \frac{ax+b}{cx+d}

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[\frac{ax+b}{cx+d}]

On using product rule we get, 

(\frac{1}{cx+d})\frac{d}{dx}(ax+b)+(ax+b)\frac{d}{dx}(\frac{1}{cx+d})

(\frac{1}{cx+d})(a)+(ax+b)\left[\frac{-1}{(cx+d)^{2}}×c\right]

(\frac{a}{cx+d})+(ax+b)\left[\frac{-c}{(cx+d)^{2}}\right]

(\frac{a}{cx+d})-\frac{c(ax+b)}{(cx+d)^{2}}

\frac{a(cx+d)-c(ax+b)}{(cx+d)^2}

\frac{acx+ad-acx-bc}{(cx+d)^2}

\frac{ad-bc}{(cx+d)^2}

Question 26. Differentiate (ax + b)n (cx + d)m with respect to x.

Solution:

We have,  

=> y = (ax + b)n (cx + d)m

On differentiating both sides, we get,

\frac{dy}{dx}=\frac{d}{dx}[(ax + b)^n (cx + d)^m]

On using product rule we get, 

(cx + d)^m\frac{d}{dx}[(ax + b)^n]+(ax + b)^n\frac{d}{dx}[(cx + d)^m]

(cx + d)^m[na(ax + b)^{n-1}]+(ax + b)^n[mc(cx + d)^{m-1}]

na(cx + d)^m(ax + b)^{n-1}+mc(ax + b)^n(cx + d)^{m-1}

(cx + d)^{m-1}(ax + b)^{n-1}[na(cx+d)+mc(ax + b)]

Question 27. Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answer are the same.

Solution:

We have, 

=> y = (1 + 2 tan x) (5 + 4 cos x)

On using product rule we get, 

\frac{d}{dx}[(1 + 2 tan x) (5 + 4 cos x)]=(5 + 4 cos x)\frac{d}{dx}(1+2tanx)+(1+2tanx)\frac{d}{dx}(5+4cosx)

(5+4cosx)(2sec^2x)+(1+2tanx)(-4sinx)

= 10 sec2 x + 8 cos x sec2 x − 4 sin x − 8 sin x tan x

=  10sec^2x+8cosx(\frac{1}{cos^2x})−4sinx−8sinx(\frac{sinx}{cosx})

10sec^2x+\frac{8}{cosx}−4sinx−\frac{8sin^2x}{cosx}

10sec^2x+\frac{8(1-sin^2x)}{cosx}−4sinx

10sec^2x+\frac{8cos^2x}{cosx}−4sinx

= 10 sec2 x + 8 cos x − 4 sin x 

By using an alternate method, we have,

\frac{d}{dx}[(1 + 2 tan x) (5 + 4 cos x)]=\frac{d}{dx}(5+4cosx+10tanx+8tanxcosx)

\frac{d}{dx}(5+4cosx+10tanx+8(\frac{sinx}{cosx})cosx)

\frac{d}{dx}(5+4cosx+10tanx+8sinx)

On using chain rule, we get,

= 0 − 4 sin x + 10 sec2 x + 8 cos x

= 10 sec2 x + 8 cos x − 4 sin x 

Hence proved.

Question 28. Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(i) (3x2 + 2)2

Solution:

We have, 

=> y = (3x2 + 2)2

On using product rule we get,

\frac{d}{dx}[(3x^2+2)^2]=(3x^2+2)\frac{d}{dx}(3x^2+2)+(3x^2+2)\frac{d}{dx}(3x^2+2)

(3x^2+2)(6x)+(3x^2+2)(6x)

= 12x (3x2 + 2)

= 36 x3 + 24x

By using an alternate method, we have,

\frac{d}{dx}[(3x^2+2)^2]=\frac{d}{dx}[9x^4+4+12x^2]

On using chain rule, we get,

= 36 x3 + 0 + 24 x

= 36 x3 + 24x

Hence proved.

(ii) (x + 2)(x + 3)

Solution:

We have,

=> y = (x + 2)(x + 3)

On using product rule we get,

\frac{d}{dx}[(x + 2)(x + 3)]=(x+3)\frac{d}{dx}(x+2)+(x+2)\frac{d}{dx}(x+3)

= (x+3)(1)+(x+2)(1)

= x + 3 + x + 2

= 2x + 5

By using an alternate method, we have,

\frac{d}{dx}[(x + 2)(x + 3)]=\frac{d}{dx}[x^2+5x+6]

On using chain rule, we get,

= 2x + 5

Hence proved.

(iii) (3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

Solution:

We have, 

=> y = (3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

On using product rule we get,

\frac{d}{dx}[(3secx−4cosecx)(−2sinx+5cosx)]=(−2sinx+5cosx)\frac{d}{dx}(3secx−4cosecx)+(3secx−4cosecx)\frac{d}{dx}(−2sinx+5cosx)

= (−2 sin x + 5 cos x) (3 sec x tan x + 4 cot x cosec x)+ (3 sec x − 4 cosec x) (−2 cos x − 5 sin x)

= −6 sin x sec x tan x − 8 sin x cot x cosec x + 15 cos x sec x tan x  + 20 cos x cot x cosec x − 6 sec x cos x − 15 sec x sin x + 8 cosec x cos x + 20 cosec x sin x

= −6 tan2 x − 8 cot x + 15 tan x + 20 cot2 x − 6 − 15 tan x + 8 cot x + 20

= − 6 − 6 tan2 x + 20 cot2 x + 20

= −6 (1 + tan2 x) + 20 (cot2 x + 1)

= −6 sec2 x + 20 cosec2 x

By using an alternate method, we have,

\frac{d}{dx}[(3secx−4cosecx)(−2sinx+5cosx)]=\frac{d}{dx}(−6secxsinx+15secxcosx+6cosecxsinx-20cosecxcosx)

\frac{d}{dx}(−6tanx+15+6-20cotx)

\frac{d}{dx}(−6tanx-20cotx+21)

On using chain rule, we get,

= −6 sec2 x − (−20 cosec2 x)

= −6 sec2 x + 20 cosec2 x

Hence proved.


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!