Class 11 RD Sharma Solutions – Chapter 29 Limits – Exercise 29.8 | Set 2
Question 20. limx→1[(1 + cosÏ€x)/(1 – x)2]
Solution:
We have,
limx→1[(1 + cosÏ€x)/(1 – x)2]
Here, x→1, h→0
= Limh→0[{1 + cosÏ€(1 + h)}/{1 – (1 + h)}2]
= Limh→0[(1 – cosÏ€h)/h2]
= Limh→0[2sin2(πh/2)/h2]
=
= 2Ï€2/4
= π2/2
Question 21. limx→1[(1 – x2)/sinÏ€x]
Solution:
We have,
limx→1[(1 – x2)/sinÏ€x]
Here, x→1, h→0
= limh→0[{1 – (1 – h)2}/sinÏ€(1 – h)]
= limh→0[(2h – h2)/-sinÏ€h]
= -limh→0[{h(2 – h)}/sinÏ€h]
=
=
= (2 – 0)/Ï€
= 2/Ï€
Question 22. limx→π/4[(1 – sin2x)/(1 + cos4x)]
Solution:
We have,
limx→π/4[(1 – sin2x)/(1 + cos4x)]
Here, x→π/4, h→0
= limh→0[{1 – sin2(Ï€/4 – h)}/{1 + cos4(Ï€/4 – h)}]
= limh→0[{1 – sin(Ï€/2 – 2h)}/{1 + cos(Ï€ – 4h)}]
= limh→0[(1 – cos2h)/(1 – cos4h)]
= limh→0[2sin2h/2sin22h]
=
= (1/4)
Question 23. limx→π[(1 + cosx)/tan2x]
Solution:
We have,
limx→π[(1 + cosx)/tan2x]
Here, x→π, h→0
= limh→0[{1+cos(π + h)}/tan2(π + h)]
= limh→0[(1 – cosh)/tan2h]
= limh→0[{2sin2(h/2)}/tan2h]
=
= 2/4
= 1/2
Question 24. limn→∞[nsin(π/4n)cos(π/4n)]
Solution:
We have,
limn→∞[nsin(π/4n)cos(π/4n)]
= limn→∞[nsin(π/4n)]Limn→∞[cos(π/4n)]
=
=
Let, y = (Ï€/4n)
If n→∞, y→0.
= (π/4).Limy→0[siny/y]
= (Ï€/4)
Question 25. limn→∞[2n-1sin(a/2n)]
Solution:
We have,
limn→∞[2n-1sin(a/2n)]
=
=
=
Let, y = (a/2n)
If n→∞, y→0
= (a/2).Limy→0[siny/y]
= (a/2)
Question 26. limn→∞[sin(a/2n)/sin(b/2n)]
Solution:
We have,
limn→∞[sin(a/2n)/sin(b/2n)]
=
Let, y = (a/2n) and z = (b/2n)
If n→∞, y→0 and z→0
=
=
= (a/b)
Question 27. limx→-1[(x2 – x – 2)/{(x2 + x) + sin(x + 1)}]
Solution:
We have,
limx→-1[(x2 – x – 2)/{(x2 + x) + sin(x + 1)}]
= limx→-1[(x2 – x – 2)/{x(x + 1) + sin(x + 1)}]
= limx→-1[(x – 2)(x + 1)/{x(x + 1) + sin(x + 1)}]
Let, y = x + 1
If x→-1, then y→0
= limy→0[y(y – 3)/{y(y – 1) + siny}]
=
= (0 – 3)/{(0 – 1) + 1}
= -3/0
= ∞
Question 28. limx→2[(x2 – x – 2)/{(x2 – 2x) + sin(x – 2)}]
Solution:
We have,
limx→2[(x2 – x – 2)/{(x2 – 2x) + sin(x – 2)}]
= limx→2[{(x – 2)(x + 1)}/{x(x + 1) + sin(x + 1)}]
Let, y = x – 2
If x→2, then y→0
= limy→0[y(y + 3)/{y(y + 2) + siny}]
=
= (0 + 3)/{(0 + 1) + 1}
= 3/3
= 1
Question 29. limx→1[(1 – x)tan(Ï€x/2)]
Solution:
We have,
limx→1[(1 – x)tan(Ï€x/2)]
Here, x→1, h→0
= limh→0[{1 – (1 – h)}tan{Ï€/2(1 – h)}]
= limh→0[htan{π/2-πh/2)}
= limh→0[hcot(πh/2)]
=
=
=
= (2/Ï€)
Question 30. limx→π/4[(1 – tanx)/(1 – √2sinx)]
Solution:
We have,
limx→π/4[(1 – tanx)/(1 – √2sinx)]
On rationalizing the denominator.
= limx→π/4[{(1 – tanx)(1 – √2sinx)}/(1 – 2sin2x)]
=
=
=
=
=
= 2/1
= 2
Question 31. limx→π[{√(2 + cosx) – 1}/(Ï€ – x)2]
Solution:
We have,
limx→π[{√(2 + cosx) – 1}/(Ï€ – x)2]
Let, y = [Ï€ – x]
Here, x→π, y→0
=
= limy→0[{√(2 – cosy) – 1}/y2]
On rationalizing the numerator, we get
=
= limy→0[{1 – cosy}/y2{√(2 – cosy) – 1}]
=
=
= 2 × (1/4) × {1/(1 + 1)}
= (1/4)
Question 32. limx→π/4[(√cosx – √sinx)/(x – Ï€/4)]
Solution:
We have,
limx→π/4[(√cosx – √sinx)/(x – Ï€/4)]
On rationalizing the numerator, we get
= limx→π/4[(cosx – sinx)/{(√cosx + √sinx)(x – Ï€/4)}]
=
=
=
=
Question 33. limx→1[(1 – 1/x)/sinÏ€(x – 1)]
Solution:
We have,
limx→1[(1 – 1/x)/sinÏ€(x – 1)]
= limx→1[(x – 1)/x{sinÏ€(x – 1)}]
Let, y = x – 1
If x→1, then y→0
= limy→0[y/{(y + 1)sin(πy)}]
=
=
= 1/{(1 + 0) × 1 × π}
= 1/Ï€
Question 34. limx→π/6[(cot2x – 3)/(cosecx – 2)]
Solution:
We have,
limx→π/6[(cot2x – 3)/(cosecx – 2)]
= limx→π/6[(cosec2x – 1 – 3)/(cosecx – 2)]
= limx→π/6[(cosec2x – 22)/(cosecx – 2)]
= limx→π/6[{(cosecx + 2)(cosecx – 2)}/(cosecx – 2)]
= limx→π/6[(cosecx + 2)]
= cosec(Ï€/6) + 2
= 2 + 2
= 4
Question 35. limx→π/4[(√2 – cosx – sinx)/(4x – Ï€)2]
Solution:
We have,
limx→π/4[(√2 – cosx – sinx)/(4x – Ï€)2]
= limx→π/4[(√2 – cosx – sinx)/{42(Ï€/4 – x)2}]
=
=
=
=
= 2√2/43
= (2√2 × √2)/(43√2)
= 4/(43√2)
= 1/(16√2)
Question 36. limx→π/2[{(Ï€/2 – x)sinx – 2cosx}/{(Ï€/2 – x) + cotx}]
Solution:
We have,
limx→π/2[{(Ï€/2 – x)sinx – 2cosx}/{(Ï€/2 – x) + cotx}]
=
= limh→0[(hcosh-2sinh)/(h+tanh)]
=
(On dividing the numerator and denominator by h)
= (1 – 2)/(1 + 1)
= -1/2
Question 37. limx→π/4[(cosx – sinx)/{(Ï€/4 – x)(cosx + sinx)}]
Solution:
We have,
limx→π/4[(cosx – sinx)/{(Ï€/4 – x)(cosx + sinx)}]
On dividing the numerator and denominator by √2, we get
=
=
=
=
=
= (√2 × √2)/2
= 1
Question 38. limx→π[{1 – sin(x/2)}/{cos(x/2)(cosx/4 – sinx/4}]
Solution:
We have,
limx→π[{1 – sin(x/2)}/{cos(x/2)(cosx/4 – sinx/4}]
Let, x = π + h
If x→π, then h→0
=
=
=
=
=
=
= 1/√2
Please Login to comment...