Get the best out of our app
GFG App
Open App
Browser
Continue

# Check if a number is power of k using base changing method

This program checks whether a number n can be expressed as power of k and if yes, then to what power should k be raised to make it n. Following example will clarify :
Examples:

```Input :   n = 16, k = 2
Output :  yes : 4
Explanation : Answer is yes because 16 can
be expressed as power of 2.

Input :   n = 27, k = 3
Output :  yes : 3
Explanation : Answer is yes as 27 can be
expressed as power of 3.

Input :  n = 20, k = 5
Output : No
Explanation : Answer is No as 20 cannot
be expressed as power of 5.  ```

We have discussed two methods in below post
:Check if a number is a power of another number
In this post, a new Base Changing method is discussed.
In Base Changing Method, we simply change the base of number n to k and check if the first digit of Changed number is 1 and remaining all are zero.
Example for this : Let’s take n = 16 and k = 2.
Change 16 to base 2. i.e. (10000)2. Since first digit is 1 and remaining are zero. Hence 16 can be expressed as power of 2. Count the length of (10000)2 and subtract 1 from it, that’ll be the number to which 2 must be raised to make 16. In this case 5 – 1 = 4.
Another example : Let’s take n = 20 and k = 3.
20 in base 3 is (202)3. Since there are two non-zero digit, hence 20 cannot be expressed as power of 3.

## C++

 `// CPP program to check if a number can be` `// raised to k` `#include ` `#include ` `using` `namespace` `std;`   `bool` `isPowerOfK(unsigned ``int` `n, unsigned ``int` `k)` `{` `    ``// loop to change base n to base = k` `    ``bool` `oneSeen = ``false``;` `    ``while` `(n > 0) {`   `        ``// Find current digit in base k` `        ``int` `digit = n % k;`   `        ``// If digit is neither 0 nor 1 ` `        ``if` `(digit > 1)` `            ``return` `false``;`   `        ``// Make sure that only one 1` `        ``// is present. ` `        ``if` `(digit == 1)` `        ``{` `            ``if` `(oneSeen)` `            ``return` `false``;` `            ``oneSeen = ``true``;` `        ``}     `   `        ``n /= k;` `    ``}` `    `  `    ``return` `true``; ` `}`   `// Driver code` `int` `main()` `{` `    ``int` `n = 64, k = 4;`   `    ``if` `(isPowerOfK(n ,k))` `        ``cout << ``"Yes"``;` `    ``else` `        ``cout << ``"No"``;` `}`

## Java

 `// Java program to check if a number can be` `// raised to k`   `class` `GFG` `{` `    ``static` `boolean` `isPowerOfK(``int` `n,``int` `k)` `    ``{` `        ``// loop to change base n to base = k` `        ``boolean` `oneSeen = ``false``;` `        ``while` `(n > ``0``) ` `        ``{` `    `  `            ``// Find current digit in base k` `            ``int` `digit = n % k;` `    `  `            ``// If digit is neither 0 nor 1 ` `            ``if` `(digit > ``1``)` `                ``return` `false``;` `    `  `            ``// Make sure that only one 1` `            ``// is present. ` `            ``if` `(digit == ``1``)` `            ``{` `                ``if` `(oneSeen)` `                ``return` `false``;` `                ``oneSeen = ``true``;` `            ``}     ` `    `  `            ``n /= k;` `        ``}` `        `  `        ``return` `true``; ` `    ``}` `    `  `    ``// Driver code` `    ``public` `static` `void` `main (String[] args) ` `    ``{` `        ``int` `n = ``64``, k = ``4``;` `    `  `        ``if` `(isPowerOfK(n ,k))` `            ``System.out.print(``"Yes"``);` `        ``else` `            ``System.out.print(``"No"``);` `    ``}` `}`   `// This code is contributed by Anant Agarwal.`

## Python3

 `# Python program to` `# check if a number can be` `# raised to k`   `def` `isPowerOfK(n, k):`   `    ``# loop to change base` `    ``# n to base = k` `    ``oneSeen ``=` `False` `    ``while` `(n > ``0``):` ` `  `        ``# Find current digit in base k` `        ``digit ``=` `n ``%` `k` ` `  `        ``# If digit is neither 0 nor 1 ` `        ``if` `(digit > ``1``):` `            ``return` `False` ` `  `        ``# Make sure that only one 1` `        ``# is present. ` `        ``if` `(digit ``=``=` `1``):` `        `  `            ``if` `(oneSeen):` `                ``return` `False` `            ``oneSeen ``=` `True` ` `  `        ``n ``/``/``=` `k` `    `  `    ``return` `True` `    `  `# Driver code`   `n ``=` `64` `k ``=` `4` ` `  `if` `(isPowerOfK(n , k)):` `    ``print``(``"Yes"``)` `else``:` `    ``print``(``"No"``)`   `# This code is contributed` `# by Anant Agarwal.`

## C#

 `// C# program to check if a number can be` `// raised to k` `using` `System;`   `class` `GFG {` `    `  `    ``static` `bool` `isPowerOfK(``int` `n, ``int` `k)` `    ``{` `        `  `        ``// loop to change base n to base = k` `        ``bool` `oneSeen = ``false``;` `        ``while` `(n > 0) ` `        ``{` `    `  `            ``// Find current digit in base k` `            ``int` `digit = n % k;` `    `  `            ``// If digit is neither 0 nor 1 ` `            ``if` `(digit > 1)` `                ``return` `false``;` `    `  `            ``// Make sure that only one 1` `            ``// is present. ` `            ``if` `(digit == 1)` `            ``{` `                ``if` `(oneSeen)` `                    ``return` `false``;` `                    `  `                ``oneSeen = ``true``;` `            ``} ` `    `  `            ``n /= k;` `        ``}` `        `  `        ``return` `true``; ` `    ``}` `    `  `    ``// Driver code` `    ``public` `static` `void` `Main () ` `    ``{` `        ``int` `n = 64, k = 4;` `    `  `        ``if` `(isPowerOfK(n ,k))` `            ``Console.WriteLine(``"Yes"``);` `        ``else` `            ``Console.WriteLine(``"No"``);` `    ``}` `}`   `// This code is contributed by vt_m.`

## PHP

 ` 0) ` `    ``{`   `        ``// Find current ` `        ``// digit in base k` `        ``\$digit` `= ``\$n` `% ``\$k``;`   `        ``// If digit is ` `        ``// neither 0 nor 1 ` `        ``if` `(``\$digit` `> 1)` `            ``return` `false;`   `        ``// Make sure that` `        ``// only one 1` `        ``// is present. ` `        ``if` `(``\$digit` `== 1)` `        ``{` `            ``if` `(``\$oneSeen``)` `            ``return` `false;` `            ``\$oneSeen` `= true;` `        ``} `   `        ``\$n` `= (int)``\$n` `/ ``\$k``;` `    ``}` `    `  `    ``return` `true; ` `}`   `// Driver code` `\$n` `= 64;` `\$k` `= 4;`   `if` `(isPowerOfK(``\$n``, ``\$k``))` `    ``echo` `"Yes"``;` `else` `    ``echo` `"No"``;`   `// This code is contributed ` `// by ajit` `?>`

## Javascript

 ``

Output:

`Yes`

Time Complexity: O(logK n)

Space Complexity: O(1)

Optimized Approach:

This approach avoids the need to convert n to base k and check whether it can be represented using only the digits 0 and 1. It also avoids the need to track whether a 1 has already been seen. This results in a simpler and more efficient algorithm.

Here’s a step-by-step explanation of the code:

1. Define the isPrime function which takes an integer n as input and returns true if n is prime, and false otherwise.
2. Define the isSumOfPrimes function with parameter n.
3. Loop over all numbers from 2 to n/2 (inclusive) as potential prime numbers, and check whether each one is a prime and whether the difference between n and that number is also a prime. The loop continues until the first pair of primes is found.
4. If a pair of primes is found, return true. Otherwise, return false.
5. In the main function, set n to the desired value.
6. Call the isSumOfPrimes function with n.
7. If the function returns true, print “Yes” to the console, indicating that n can be expressed as the sum of two prime numbers. Otherwise, print “No”.

## C++

 `#include `   `using` `namespace` `std;`   `bool` `isPowerOfK(``int` `n, ``int` `k) {` `    ``// Check for base cases` `    ``if` `(n == 0 || k == 0 || k == 1) {` `        ``return` `false``;` `    ``}`   `    ``// Check if n is a power of k` `    ``while` `(n % k == 0) {` `        ``n /= k;` `    ``}`   `    ``return` `n == 1;` `}`   `int` `main() {` `    ``int` `n = 64, k = 4;`   `    ``if` `(isPowerOfK(n, k)) {` `        ``cout << ``"Yes"``;` `    ``} ``else` `{` `        ``cout << ``"No"``;` `    ``}`   `    ``return` `0;` `}`

## Java

 `class` `GFG {` `    ``static` `boolean` `isPowerOfK(``int` `n, ``int` `k) {` `        ``// Check for base cases` `        ``if` `(n == ``0` `|| k == ``0` `|| k == ``1``) {` `            ``return` `false``;` `        ``}`   `        ``// Check if n is a power of k` `        ``while` `(n % k == ``0``) {` `            ``n /= k;` `        ``}`   `        ``return` `n == ``1``;` `    ``}`   `    ``public` `static` `void` `main(String[] args) {` `        ``int` `n = ``64``, k = ``4``;`   `        ``if` `(isPowerOfK(n, k)) {` `            ``System.out.print(``"Yes"``);` `        ``} ``else` `{` `            ``System.out.print(``"No"``);` `        ``}` `    ``}` `}`

## Python3

 `def` `isPowerOfK(n, k):` `    ``# Check for base cases` `    ``if` `n ``=``=` `0` `or` `k ``=``=` `0` `or` `k ``=``=` `1``:` `        ``return` `False`   `    ``# Check if n is a power of k` `    ``while` `n ``%` `k ``=``=` `0``:` `        ``n ``/``/``=` `k`   `    ``return` `n ``=``=` `1`   `n ``=` `64` `k ``=` `4`   `if` `isPowerOfK(n, k):` `    ``print``(``"Yes"``)` `else``:` `    ``print``(``"No"``)`

## C#

 `using` `System;`   `class` `GFG {` `  ``static` `bool` `IsPowerOfK(``int` `n, ``int` `k)` `  ``{` `    `  `    ``// Check for base cases` `    ``if` `(n == 0 || k == 0 || k == 1) {` `      ``return` `false``;` `    ``}`   `    ``// Check if n is a power of k` `    ``while` `(n % k == 0) {` `      ``n /= k;` `    ``}`   `    ``return` `n == 1;` `  ``}`   `  ``static` `void` `Main(``string``[] args) {` `    ``int` `n = 64, k = 4;`   `    ``if` `(IsPowerOfK(n, k)) {` `      ``Console.Write(``"Yes"``);` `    ``} ``else` `{` `      ``Console.Write(``"No"``);` `    ``}` `  ``}` `}`

## Javascript

 `function` `isPowerOfK(n, k) {` `    ``// Check for base cases` `    ``if` `(n === 0 || k === 0 || k === 1) {` `        ``return` `false``;` `    ``}`   `    ``// Check if n is a power of k` `    ``while` `(n % k === 0) {` `        ``n = Math.floor(n / k);` `    ``}`   `    ``return` `n === 1;` `}`   `let n = 64;` `let k = 4;`   `if` `(isPowerOfK(n, k)) {` `    ``console.log(``"Yes"``);` `} ``else` `{` `    ``console.log(``"No"``);` `}`

OUTPUT:

`YES`

Time Complexity: O(logK n)

Space Complexity: O(1)

This article is contributed by Shubham Rana. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up
Similar Reads
Related Tutorials