How to check if a given number is Fibonacci number?
Given a number ‘n’, how to check if n is a Fibonacci number. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ..
Examples :
Input : 8 Output : Yes Input : 34 Output : Yes Input : 41 Output : No
A simple way is to generate Fibonacci numbers until the generated number is greater than or equal to ‘n’. Following is an interesting property about Fibonacci numbers that can also be used to check if a given number is Fibonacci or not.
A number is Fibonacci if and only if one or both of (5*n2 + 4) or (5*n2 – 4) is a perfect square (Source: Wiki). Following is a simple program based on this concept.
C++
// C++ program to check if x is a perfect square #include <bits/stdc++.h> using namespace std; // A utility function that returns true if x is perfect // square bool isPerfectSquare( int x) { int s = sqrt (x); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false bool isFibonacci( int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions int main() { for ( int i = 1; i <= 10; i++) isFibonacci(i) ? cout << i << " is a Fibonacci Number \n" : cout << i << " is a not Fibonacci Number \n" ; return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804) |
C
// C program to check if x is a perfect square #include <math.h> #include <stdbool.h> #include <stdio.h> // A utility function that returns true if x is perfect // square bool isPerfectSquare( int x) { int s = sqrt (x); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false bool isFibonacci( int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions int main() { for ( int i = 1; i <= 10; i++) { if (isFibonacci(i)) printf ( "%d is a Fibonacci Number \n" , i); else printf ( "%d is a not Fibonacci Number \n" , i); } return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804) |
Java
// Java program to check if x is a perfect square class GFG { // A utility method that returns true if x is perfect square static boolean isPerfectSquare( int x) { int s = ( int ) Math.sqrt(x); return (s*s == x); } // Returns true if n is a Fibonacci Number, else false static boolean isFibonacci( int n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both // is a perfect square return isPerfectSquare( 5 *n*n + 4 ) || isPerfectSquare( 5 *n*n - 4 ); } // Driver method public static void main(String[] args) { for ( int i = 1 ; i <= 10 ; i++) System.out.println(isFibonacci(i) ? i + " is a Fibonacci Number" : i + " is a not Fibonacci Number" ); } } //This code is contributed by Nikita Tiwari |
Python
# python program to check if x is a perfect square import math # A utility function that returns true if x is perfect square def isPerfectSquare(x): s = int (math.sqrt(x)) return s * s = = x # Returns true if n is a Fibonacci Number, else false def isFibonacci(n): # n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both # is a perfect square return isPerfectSquare( 5 * n * n + 4 ) or isPerfectSquare( 5 * n * n - 4 ) # A utility function to test above functions for i in range ( 1 , 11 ): if (isFibonacci(i) = = True ): print i, "is a Fibonacci Number" else : print i, "is a not Fibonacci Number " |
C#
// C# program to check if // x is a perfect square using System; class GFG { // A utility function that returns // true if x is perfect square static bool isPerfectSquare( int x) { int s = ( int )Math.Sqrt(x); return (s * s == x); } // Returns true if n is a // Fibonacci Number, else false static bool isFibonacci( int n) { // n is Fibonacci if one of // 5*n*n + 4 or 5*n*n - 4 or // both are a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // Driver method public static void Main() { for ( int i = 1; i <= 10; i++) Console.WriteLine(isFibonacci(i) ? i + " is a Fibonacci Number" : i + " is a not Fibonacci Number" ); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to check if // x is a perfect square // A utility function that // returns true if x is // perfect square function isPerfectSquare( $x ) { $s = (int)(sqrt( $x )); return ( $s * $s == $x ); } // Returns true if n is a // Fibonacci Number, else false function isFibonacci( $n ) { // n is Fibonacci if one of // 5*n*n + 4 or 5*n*n - 4 or // both is a perfect square return isPerfectSquare(5 * $n * $n + 4) || isPerfectSquare(5 * $n * $n - 4); } // Driver Code for ( $i = 1; $i <= 10; $i ++) if (isFibonacci( $i )) echo "$i is a Fibonacci Number \n" ; else echo "$i is a not Fibonacci Number \n" ; // This code is contributed by mits ?> |
Javascript
<script> // javascript program to check if x is a perfect square // A utility function that returns true if x is perfect square function isPerfectSquare( x) { let s = parseInt(Math.sqrt(x)); return (s * s == x); } // Returns true if n is a Fibonacci Number, else false function isFibonacci( n) { // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both // is a perfect square return isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4); } // A utility function to test above functions for (let i = 1; i <= 10; i++) isFibonacci(i)? document.write( i + " is a Fibonacci Number <br/>" ): document.write(i + " is a not Fibonacci Number <br/>" ) ; // This code is contributed by Rajput-Ji </script> |
1 is a Fibonacci Number 2 is a Fibonacci Number 3 is a Fibonacci Number 4 is a not Fibonacci Number 5 is a Fibonacci Number 6 is a not Fibonacci Number 7 is a not Fibonacci Number 8 is a Fibonacci Number 9 is a not Fibonacci Number 10 is a not Fibonacci Number
Time Complexity: O(n)
Auxiliary Space: O(1)
Approach 2:
In this approach, we first handle the special case where the input number is 0 (which is a Fibonacci number). Then, we use a while loop to generate Fibonacci numbers until we find a Fibonacci number greater than or equal to the input number. If the generated Fibonacci number is equal to the input number, we return true. Otherwise, we check if either (5 * n * n + 4) or (5 * n * n – 4) is a perfect square, as per the formula mentioned in the original code.
This approach may be more efficient than the original code in some cases, especially for larger input values, as it generates Fibonacci numbers on-the-fly and stops as soon as it finds a Fibonacci number greater than or equal to the input number.
C++
#include <bits/stdc++.h> using namespace std; bool isPerfectSquare( int n) { int root = sqrt (n); return (root * root == n); } bool isFibonacci( int n) { if (n == 0) { return true ; } int a = 0, b = 1, c = 1; while (c < n) { a = b; b = c; c = a + b; } return (c == n || isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4)); } int main() { for ( int i = 1; i <= 10; i++) { if (isFibonacci(i)) { cout << i << " is a Fibonacci number.\n" ; } else { cout << i << " is not a Fibonacci number.\n" ; } } return 0; } |
Java
import java.util.*; public class Main { public static boolean isPerfectSquare( int n) { int root = ( int ) Math.sqrt(n); return (root * root == n); } public static boolean isFibonacci( int n) { if (n == 0 ) { return true ; } int a = 0 , b = 1 , c = 1 ; while (c < n) { a = b; b = c; c = a + b; } return (c == n || isPerfectSquare( 5 * n * n + 4 ) || isPerfectSquare( 5 * n * n - 4 )); } public static void main(String[] args) { for ( int i = 1 ; i <= 10 ; i++) { if (isFibonacci(i)) { System.out.println(i + " is a Fibonacci number." ); } else { System.out.println(i + " is not a Fibonacci number." ); } } } } |
Python3
import math def is_perfect_square(n): root = int (math.sqrt(n)) return (root * root = = n) def is_fibonacci(n): if n = = 0 : return True a, b, c = 0 , 1 , 1 while c < n: a = b b = c c = a + b return c = = n or is_perfect_square( 5 * n * n + 4 ) or is_perfect_square( 5 * n * n - 4 ) for i in range ( 1 , 11 ): if is_fibonacci(i): print (i, "is a Fibonacci number." ) else : print (i, "is not a Fibonacci number." ) |
C#
// C# program for the above approach using System; public class Program { static bool IsPerfectSquare( int n) { int root = ( int )Math.Sqrt(n); return (root * root == n); } static bool IsFibonacci( int n) { if (n == 0) { return true ; } int a = 0, b = 1, c = 1; while (c < n) { a = b; b = c; c = a + b; } return (c == n || IsPerfectSquare(5 * n * n + 4) || IsPerfectSquare(5 * n * n - 4)); } public static void Main() { for ( int i = 1; i <= 10; i++) { if (IsFibonacci(i)) { Console.WriteLine(i + " is a Fibonacci number." ); } else { Console.WriteLine(i + " is not a Fibonacci number." ); } } } } // This code is contributed by adityasha4x71 |
1 is a Fibonacci number. 2 is a Fibonacci number. 3 is a Fibonacci number. 4 is not a Fibonacci number. 5 is a Fibonacci number. 6 is not a Fibonacci number. 7 is not a Fibonacci number. 8 is a Fibonacci number. 9 is not a Fibonacci number. 10 is not a Fibonacci number.
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Abhay Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...