Skip to content
Related Articles

Related Articles

Check if a large number is divisible by 11 or not

View Discussion
Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 10 Aug, 2022

Given a number, the task is to check if the number is divisible by 11 or not. The input number may be large and it may not be possible to store it even if we use long long int.
Examples: 
 

Input : n = 76945
Output : Yes

Input  : n = 1234567589333892
Output : Yes

Input  : n = 363588395960667043875487
Output : No

 

Recommended Practice

Since input number may be very large, we cannot use n % 11 to check if a number is divisible by 11 or not, especially in languages like C/C++. The idea is based on following fact.
A number is divisible by 11 if difference of following two is divisible by 11. 
 

  1. Sum of digits at odd places.
  2. Sum of digits at even places.

Illustration: 
 

For example, let us consider 76945 
Sum of digits at odd places  : 7 + 9 + 5
Sum of digits at even places : 6 + 4 
Difference of two sums = 21 - 10 = 11
Since difference is divisible by 11, the
number 7945 is divisible by 11.

How does this work? 

Let us consider 7694, we can write it as
7694 = 7*1000 + 6*100 + 9*10 + 4

The proof is based on below observation:
Remainder of 10i divided by 11 is 1 if i is even
Remainder of 10i divided by 11 is -1 if i is odd

So the powers of 10 only result in values either 1 
or -1. 

Remainder of "7*1000 + 6*100 + 9*10 + 4"
divided by 11 can be written as : 
7*(-1) + 6*1 + 9*(-1) + 4*1

The above expression is basically difference 
between sum of even digits and odd digits.

Below is implementation of above fact :
 

C++




// C++ program to find if a number is divisible by
// 11 or not
#include<bits/stdc++.h>
using namespace std;
 
// Function to find that number divisible by 11 or not
int check(string str)
{
    int n = str.length();
 
    // Compute sum of even and odd digit
    // sums
    int oddDigSum = 0, evenDigSum = 0;
    for (int i=0; i<n; i++)
    {
        // When i is even, position of digit is odd
        if (i%2 == 0)
            oddDigSum += (str[i]-'0');
        else
            evenDigSum += (str[i]-'0');
    }
 
    // Check its difference is divisible by 11 or not
    return ((oddDigSum - evenDigSum) % 11 == 0);
}
 
// Driver code
int main()
{
    string str = "76945";
    check(str)?  cout << "Yes" : cout << "No ";
    return 0;
}


Java




// Java program to find if a number is
// divisible by 11 or not
class IsDivisible
{
    // Function to find that number divisible by 11 or not
    static boolean check(String str)
    {
        int n = str.length();
      
        // Compute sum of even and odd digit
        // sums
        int oddDigSum = 0, evenDigSum = 0;
        for (int i=0; i<n; i++)
        {
            // When i is even, position of digit is odd
            if (i%2 == 0)
                oddDigSum += (str.charAt(i)-'0');
            else
                evenDigSum += (str.charAt(i)-'0');
        }
      
        // Check its difference is divisible by 11 or not
        return ((oddDigSum - evenDigSum) % 11 == 0);
    }
     
    // main function
    public static void main (String[] args)
    {
        String str = "76945";
        if(check(str))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}


Python3




# Python 3 code program to find if a number
# is divisible by 11 or not
 
 
# Function to find that number divisible by
#  11 or not
def check(st) :
    n = len(st)
 
    # Compute sum of even and odd digit
    # sums
    oddDigSum = 0
    evenDigSum = 0
    for i in range(0,n) :
        # When i is even, position of digit is odd
        if (i % 2 == 0) :
            oddDigSum = oddDigSum + ((int)(st[i]))
        else:
            evenDigSum = evenDigSum + ((int)(st[i]))
     
     
    # Check its difference is divisible by 11 or not
    return ((oddDigSum - evenDigSum) % 11 == 0)
 
# Driver code
st = "76945"
if(check(st)) :
    print( "Yes")
else :
    print("No ")
     
# This code is contributed by Nikita tiwari.


C#




// C# program to find if a number is
// divisible by 11 or not
using System;
 
class GFG
{
    // Function to find that number
    // divisible by 11 or not
    static bool check(string str)
    {
        int n = str.Length;
     
        // Compute sum of even and odd digit
        // sums
        int oddDigSum = 0, evenDigSum = 0;
         
        for (int i = 0; i < n; i++)
        {
            // When i is even, position of
            // digit is odd
            if (i % 2 == 0)
                oddDigSum += (str[i] - '0');
            else
                evenDigSum += (str[i] - '0');
        }
     
        // Check its difference is
        // divisible by 11 or not
        return ((oddDigSum - evenDigSum)
                                % 11 == 0);
    }
     
    // main function
    public static void Main ()
    {
        String str = "76945";
         
        if(check(str))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find if a
// number is divisible by
// 11 or not
 
// Function to find that number
// divisible by 11 or not
function check($str)
{
    $n = strlen($str);
 
    // Compute sum of even
    // and odd digit sums
    $oddDigSum = 0; $evenDigSum = 0;
    for ($i = 0; $i < $n; $i++)
    {
         
        // When i is even, position
        // of digit is odd
        if ($i % 2 == 0)
            $oddDigSum += ($str[$i] - '0');
        else
            $evenDigSum += ($str[$i] - '0');
    }
 
    // Check its difference
    // is divisible by 11 or not
    return (($oddDigSum - $evenDigSum)
                            % 11 == 0);
}
 
// Driver code
$str = "76945";
$x = check($str)? "Yes" : "No ";
echo($x);
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript program for the above approach
 
    // Function to find that number
    // divisible by 11 or not
    function check(str)
    {
        let n = str.length;
     
        // Compute sum of even and odd digit
        // sums
        let oddDigSum = 0, evenDigSum = 0;
         
        for (let i = 0; i < n; i++)
        {
         
            // When i is even, position of
            // digit is odd
            if (i % 2 == 0)
                oddDigSum += (str[i] - '0');
            else
                evenDigSum += (str[i] - '0');
        }
     
        // Check its difference is
        // divisible by 11 or not
        return ((oddDigSum - evenDigSum)
                                % 11 == 0);
    }
     
// Driver Code
    let str = "76945";
    if(check(str))
        document.write("Yes");
    else
        document.write("No");
         
// This code is contributed by chinmoy1997pal.
</script>


Output

Yes

Time Complexity: O(logN), where N is the given number.

Auxiliary Space: O(1), as we are not using any extra space.

Method: Checking given number is divisible by 11 or not by using the modulo division operator “%”.  

C++




// C++ code to check whether
// the given number is divisible by 11 or not
#include <bits/stdc++.h>
using namespace std;
 
int main()
{
   
    // input
    long long n = 1234567589333892;
 
    // the above input can also be given as n=input() ->
    // taking input from user finding given number is
    // divisible by 11 or not
    if (n % 11 == 0)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
}
 
// This code is contributed by phasing17


Python3




# Python code
# To check whether the given number is divisible by 11 or not
 
#input
n=1234567589333892
# the above input can also be given as n=input() -> taking input from user
# finding given number is divisible by 11 or not
if int(n)%11==0:
  print("Yes")
else:
  print("No")
 
  # this code is contributed by gangarajula laxmi


Javascript




// JavaScript code to check whether
// the given number is divisible by 11 or not
 
// input
let n = 1234567589333892
 
// the above input can also be given as n=input() -> taking input from user
// finding given number is divisible by 11 or not
if (n % 11 == 0)
  console.log("Yes")
else
  console.log("No")
 
// this code is contributed by phasing17


Output

Yes

Method: Checking given number is divisible by 11 or not using modulo division.

C++




// C++ program to check if given number is divisible by 11
// or not using modulo division
 
#include <iostream>
using namespace std;
 
int main()
{
 
    // input number
    int num = 76945;
    // checking if the given number is divisible by 11 or
    // not using modulo division operator if the output of
    // num%11 is equal to 0 then given number is divisible
    // by 11 otherwise not divisible by 11
    if (num % 11 == 0) {
        cout << " divisible";
    }
    else {
        cout << " not divisible";
    }
    return 0;
}
 
// this code is contributed by gangarajula laxmi


Java




// java program to check if given number is divisible by 11
// or not using modulo division
 
import java.io.*;
 
class GFG {
    public static void main(String[] args)
    {
        // input number
        int num = 76945;
        // checking if the given number is divisible by 11
        // or not
        // using modulo division operator if the output of
        // num%11 is equal to 0 then given number is
        // divisible by 11 otherwise not divisible by 11
        if (num % 11 == 0) {
            System.out.println(" divisible");
        }
        else {
            System.out.println(" not divisible");
        }
    }
}
 
// this code is contributed by gangarajula laxmi


C#




using System;
 
public class GFG {
 
    static public void Main()
    {
 
        // input number
        double num = 76945;
       
        // checking if the given number is divisible by 11
        // or not using modulo division operator if the
        // output of num%11 is equal to 0 then given number
        // is divisible by 11 otherwise not divisible by 11
        if (num % 11 == 0) {
            Console.Write(" divisible");
        }
        else {
            Console.Write(" not divisible");
        }
    }
   
  // this code is contributed by gangarajula laxmi


Javascript




<script>
        // JavaScript code for the above approach
 
        // To check whether the given number is divisible by 11 or not
 
        // input
        var n = 76945
         
        // finding given number is divisible by 11 or not
        if (n % 11 == 0)
            document.write("Yes")
        else
            document.write("No")
 
// This code is contributed by laxmigangarajula03
    </script>


PHP




<?php
// PHP program to check
// if a large number is
// divisible by 11.
 
  // Driver Code
  // input number
$num = 76945;
 
// finding given number is divisible by 11 or not
if ( $num % 11 == 0)
    echo " divisible";
else
    echo "not divisible";
 
// This code is contributed by satwik4409.
?>


Python3




# Python3 code for the above approach
 
# To check whether the given number is divisible by 11 or not
 
# input
n = 76945
         
# finding given number is divisible by 11 or not
if (n % 11 == 0):
    print("Yes")
else:
    print("No")
 
#  This code is contributed by phasing17


Output

 divisible

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!