Check if two strings can be made equal by swapping one character among each other
Given two strings A and B of length N, the task is to check whether the two strings can be made equal by swapping any character of A with any other character of B only once.
Examples:
Input: A = “SEEKSFORGEEKS”, B = “GEEKSFORGEEKG”
Output: Yes
“SEEKSFORGEEKS” and “GEEKSFORGEEKG”After removing the elements which are the same and have the same index in both the strings. We have string A=”SS” and B=”GG”.
The new strings are of length two and both the elements in each string are same.Hence swapping is possible.
Input: A = “GEEKSFORGEEKS”, B = “THESUPERBSITE”
Output: No
Approach: First omit the elements which are the same and have the same index in both the strings. Then if the new strings are of length two and both the elements in each string are the same then only the swap is possible.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns true if the string // can be made equal after one swap bool canBeEqual(string a, string b, int n) { // A and B are new a and b // after we omit the same elements vector< char > A, B; // Take only the characters which are // different in both the strings // for every pair of indices for ( int i = 0; i < n; i++) { // If the current characters differ if (a[i]!= b[i]) { A.push_back(a[i]); B.push_back(b[i]); } } // The strings were already equal if (A.size() == B.size() and B.size() == 0) return true ; // If the lengths of the // strings are two if (A.size() == B.size() and B.size() == 2) { // If swapping these characters // can make the strings equal if (A[0] == A[1] and B[0] == B[1]) return true ; } return false ; } // Driver code int main() { string A = "SEEKSFORGEEKS" ; string B = "GEEKSFORGEEKG" ; if (canBeEqual(A, B, A.size())) printf ( "Yes" ); else printf ( "No" ); } // This code is contributed by Mohit Kumar |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function that returns true if the string // can be made equal after one swap static boolean canBeEqual( char []a, char []b, int n) { // A and B are new a and b // after we omit the same elements Vector<Character> A = new Vector<>(); Vector<Character> B = new Vector<>(); // Take only the characters which are // different in both the strings // for every pair of indices for ( int i = 0 ; i < n; i++) { // If the current characters differ if (a[i] != b[i]) { A.add(a[i]); B.add(b[i]); } } // The strings were already equal if (A.size() == B.size() && B.size() == 0 ) return true ; // If the lengths of the // strings are two if (A.size() == B.size() && B.size() == 2 ) { // If swapping these characters // can make the strings equal if (A.get( 0 ) == A.get( 1 ) && B.get( 0 ) == B.get( 1 )) return true ; } return false ; } // Driver code public static void main(String[] args) { char []A = "SEEKSFORGEEKS" .toCharArray(); char []B = "GEEKSFORGEEKG" .toCharArray(); if (canBeEqual(A, B, A.length)) System.out.printf( "Yes" ); else System.out.printf( "No" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Function that returns true if the string # can be made equal after one swap def canBeEqual(a, b, n): # A and B are new a and b # after we omit the same elements A = [] B = [] # Take only the characters which are # different in both the strings # for every pair of indices for i in range (n): # If the current characters differ if a[i]! = b[i]: A.append(a[i]) B.append(b[i]) # The strings were already equal if len (A) = = len (B) = = 0 : return True # If the lengths of the # strings are two if len (A) = = len (B) = = 2 : # If swapping these characters # can make the strings equal if A[ 0 ] = = A[ 1 ] and B[ 0 ] = = B[ 1 ]: return True return False # Driver code A = 'SEEKSFORGEEKS' B = 'GEEKSFORGEEKG' if (canBeEqual(A, B, len (A))): print ( "Yes" ) else : print ( "No" ) |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { // Function that returns true if the string // can be made equal after one swap static Boolean canBeEqual( char []a, char []b, int n) { // A and B are new a and b // after we omit the same elements List< char > A = new List< char >(); List< char > B = new List< char >(); // Take only the characters which are // different in both the strings // for every pair of indices for ( int i = 0; i < n; i++) { // If the current characters differ if (a[i] != b[i]) { A.Add(a[i]); B.Add(b[i]); } } // The strings were already equal if (A.Count == B.Count && B.Count == 0) return true ; // If the lengths of the // strings are two if (A.Count == B.Count && B.Count == 2) { // If swapping these characters // can make the strings equal if (A[0] == A[1] && B[0] == B[1]) return true ; } return false ; } // Driver code public static void Main(String[] args) { char []A = "SEEKSFORGEEKS" .ToCharArray(); char []B = "GEEKSFORGEEKG" .ToCharArray(); if (canBeEqual(A, B, A.Length)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function that returns true if the string // can be made equal after one swap function canBeEqual(a,b,n) { // A and B are new a and b // after we omit the same elements let A = []; let B = []; // Take only the characters which are // different in both the strings // for every pair of indices for (let i = 0; i < n; i++) { // If the current characters differ if (a[i] != b[i]) { A.push(a[i]); B.push(b[i]); } } // The strings were already equal if (A.length == B.length && B.length == 0) return true ; // If the lengths of the // strings are two if (A.length == B.length && B.length == 2) { // If swapping these characters // can make the strings equal if (A[0] == A[1] && B[0] == B[1]) return true ; } return false ; } // Driver code let A = "SEEKSFORGEEKS" .split( "" ); let B = "GEEKSFORGEEKG" .split( "" ); if (canBeEqual(A, B, A.length)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by unknown2108 </script> |
Yes
Time Complexity: O(N), where N is the size of the given strings.
Auxiliary Space: O(N), where N is the size of the given strings.
Please Login to comment...