Check if the given two matrices are mirror images of one another
Given two matrices mat1[][] and mat2[][] of size NxN. The task is to find if the given two matrices are mirror images of one another. Print “Yes” if the given two matrices are mirror images, otherwise print “No”.
Two matrices mat1 and mat2 of size N*N are said to be mirror images of one another if for any valid index (i, j) of the matrix:
mat1[i][j] = mat2[i][N-j-1]
Examples:
Input:
mat1[][] = {{1, 2, 3}, {3, 4, 5}, {6, 7, 8}},
mat2[][] = {{3, 2, 1}, {5, 4, 3}, {8, 7, 6}}
Output: Yes
Input:
mat1 = {{1, 2, 3}, {5, 4, 1}, {6, 7, 2}};
mat2 = {{3, 2, 1}, {5, 4, 1}, {2, 7, 6}};
Output: No
Approach: The approach is based on the observation that a matrix is a mirror image of another only if the elements of each row of the first matrix are equal to the reversed row of elements of the other matrix. Follow the steps below :
- Traverse over the matrix mat1[][] row-wise from start to end and over mat2[][] row-wise from end to start.
- While traversing, if any element of mat1[][] is found to be not equal to the element at mat2[][], then print “No”
- After traversing both the matrices, if all the elements are found to be equal, print “Yes”.
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // Function to check whether the // two matrices are mirror // of each other void mirrorMatrix( int mat1[][4], int mat2[][4], int N) { // Initialising row and column of // second matrix int row = 0; int col = 0; bool isMirrorImage = true ; // Iterating over the matrices for ( int i = 0; i < N; i++) { // Check row of first matrix with // reversed row of second matrix for ( int j = N - 1; j >= 0; j--) { // If the element is not equal if (mat2[row][col] != mat1[i][j]) { isMirrorImage = false ; } // Increment column col++; } // Reset column to 0 // for new row col = 0; // Increment row row++; } if (isMirrorImage) cout << "Yes" ; else cout << "No" ; } // Driver code int main() { // Given 2 matrices int N = 4; int mat1[][4] = { { 1, 2, 3, 4 }, { 0, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; int mat2[][4] = { { 4, 3, 2, 1 }, { 8, 7, 6, 0 }, { 12, 11, 10, 9 }, { 16, 15, 14, 13 } }; // Function Call mirrorMatrix(mat1, mat2, N); } |
Java
// Java implementation of // the above approach import java.util.*; class GFG{ // Function to check whether the // two matrices are mirror // of each other static void mirrorMatrix( int mat1[][], int mat2[][], int N) { // Initialising row and column of // second matrix int row = 0 ; int col = 0 ; boolean isMirrorImage = true ; // Iterating over the matrices for ( int i = 0 ; i < N; i++) { // Check row of first matrix with // reversed row of second matrix for ( int j = N - 1 ; j >= 0 ; j--) { // If the element is not equal if (mat2[row][col] != mat1[i][j]) { isMirrorImage = false ; } // Increment column col++; } // Reset column to 0 // for new row col = 0 ; // Increment row row++; } if (isMirrorImage) System.out.print( "Yes" ); else System.out.print( "No" ); } // Driver code public static void main(String[] args) { // Given 2 matrices int N = 4 ; int mat1[][] = {{ 1 , 2 , 3 , 4 }, { 0 , 6 , 7 , 8 }, { 9 , 10 , 11 , 12 }, { 13 , 14 , 15 , 16 }}; int mat2[][] = {{ 4 , 3 , 2 , 1 }, { 8 , 7 , 6 , 0 }, { 12 , 11 , 10 , 9 }, { 16 , 15 , 14 , 13 }}; // Function Call mirrorMatrix(mat1, mat2, N); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of # the above approach # Function to check whether the # two matrices are mirror # of each other def mirrorMatrix(mat1, mat2, N): # Initialising row and column of # second matrix row = 0 col = 0 isMirrorImage = True # Iterating over the matrices for i in range (N): # Check row of first matrix with # reversed row of second matrix for j in range (N - 1 , - 1 , - 1 ): # If the element is not equal if (mat2[row][col] ! = mat1[i][j]): isMirrorImage = False # Increment column col + = 1 # Reset column to 0 # for new row col = 0 # Increment row row + = 1 if (isMirrorImage): print ( "Yes" ) else : print ( "No" ) # Driver code if __name__ = = '__main__' : # Given 2 matrices N = 4 mat1 = [ [ 1 , 2 , 3 , 4 ], [ 0 , 6 , 7 , 8 ], [ 9 , 10 , 11 , 12 ], [ 13 , 14 , 15 , 16 ] ] mat2 = [ [ 4 , 3 , 2 , 1 ], [ 8 , 7 , 6 , 0 ], [ 12 , 11 , 10 , 9 ], [ 16 , 15 , 14 , 13 ] ] # Function call mirrorMatrix(mat1, mat2, N) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of // the above approach using System; class GFG{ // Function to check whether the // two matrices are mirror // of each other static void mirrorMatrix( int [,] mat1, int [,]mat2, int N) { // Initialising row and column of // second matrix int row = 0; int col = 0; bool isMirrorImage = true ; // Iterating over the matrices for ( int i = 0; i < N; i++) { // Check row of first matrix with // reversed row of second matrix for ( int j = N - 1; j >= 0; j--) { // If the element is not equal if (mat2[row, col] != mat1[i, j]) { isMirrorImage = false ; } // Increment column col++; } // Reset column to 0 // for new row col = 0; // Increment row row++; } if (isMirrorImage) Console.Write( "Yes" ); else Console.Write( "No" ); } // Driver code public static void Main(String[] args) { // Given 2 matrices int N = 4; int [,]mat1 = {{1, 2, 3, 4}, {0, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}; int [,]mat2 = {{4, 3, 2, 1}, {8, 7, 6, 0}, {12, 11, 10, 9}, {16, 15, 14, 13}}; // Function Call mirrorMatrix(mat1, mat2, N); } } // This code is contributed by shikhasingrajput |
Javascript
<script> // Javascript implementation of // the above approach // Function to check whether the // two matrices are mirror // of each other function mirrorMatrix(mat1, mat2, N) { // Initialising row and column of // second matrix let row = 0; let col = 0; let isMirrorImage = true ; // Iterating over the matrices for (let i = 0; i < N; i++) { // Check row of first matrix with // reversed row of second matrix for (let j = N - 1; j >= 0; j--) { // If the element is not equal if (mat2[row][col] != mat1[i][j]) { isMirrorImage = false ; } // Increment column col++; } // Reset column to 0 // for new row col = 0; // Increment row row++; } if (isMirrorImage) document.write( "Yes" ); else document.write( "No" ); } // Driver code // Given 2 matrices let N = 4; let mat1 = [ [ 1, 2, 3, 4 ], [ 0, 6, 7, 8 ], [ 9, 10, 11, 12 ], [ 13, 14, 15, 16 ] ]; let mat2 = [ [ 4, 3, 2, 1 ], [ 8, 7, 6, 0 ], [ 12, 11, 10, 9 ], [ 16, 15, 14, 13 ] ]; // Function Call mirrorMatrix(mat1, mat2, N); </script> |
Yes
Time complexity: O(N2)
Auxiliary Space: O(1)
Please Login to comment...