Check if removing an edge can divide a Binary Tree in two halves
Given a Binary Tree, find if there exists an edge whose removal creates two trees of equal size.
Examples:
Input : root of following tree 5 / \ 1 6 / / \ 3 7 4 Output : true Removing edge 5-6 creates two trees of equal size Input : root of following tree 5 / \ 1 6 / \ 7 4 / \ \ 3 2 8 Output : false There is no edge whose removal creates two trees of equal size.
Source- Kshitij IIT KGP
Method 1 (Simple): First count number of nodes in whole tree. Let count of all nodes be n. Now traverse tree and for every node, find size of subtree rooted with this node. Let the subtree size be s. If n-s is equal to s, then return true, else false.
C++
// C++ program to check if there exist an edge whose // removal creates two trees of same size #include<bits/stdc++.h> using namespace std; struct Node { int data; struct Node* left, *right; }; // utility function to create a new node struct Node* newNode( int x) { struct Node* temp = new Node; temp->data = x; temp->left = temp->right = NULL; return temp; }; // To calculate size of tree with given root int count(Node* root) { if (root==NULL) return 0; return count(root->left) + count(root->right) + 1; } // This function returns true if there is an edge // whose removal can divide the tree in two halves // n is size of tree bool checkRec(Node* root, int n) { // Base cases if (root ==NULL) return false ; // Check for root if (count(root) == n-count(root)) return true ; // Check for rest of the nodes return checkRec(root->left, n) || checkRec(root->right, n); } // This function mainly uses checkRec() bool check(Node *root) { // Count total nodes in given tree int n = count(root); // Now recursively check all nodes return checkRec(root, n); } // Driver code int main() { struct Node* root = newNode(5); root->left = newNode(1); root->right = newNode(6); root->left->left = newNode(3); root->right->left = newNode(7); root->right->right = newNode(4); check(root)? printf ( "YES" ) : printf ( "NO" ); return 0; } |
Java
// Java program to check if there exist an edge whose // removal creates two trees of same size class Node { int key; Node left, right; public Node( int key) { this .key = key; left = right = null ; } } class BinaryTree { Node root; // To calculate size of tree with given root int count(Node node) { if (node == null ) return 0 ; return count(node.left) + count(node.right) + 1 ; } // This function returns true if there is an edge // whose removal can divide the tree in two halves // n is size of tree boolean checkRec(Node node, int n) { // Base cases if (node == null ) return false ; // Check for root if (count(node) == n - count(node)) return true ; // Check for rest of the nodes return checkRec(node.left, n) || checkRec(node.right, n); } // This function mainly uses checkRec() boolean check(Node node) { // Count total nodes in given tree int n = count(node); // Now recursively check all nodes return checkRec(node, n); } // Driver code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 5 ); tree.root.left = new Node( 1 ); tree.root.right = new Node( 6 ); tree.root.left.left = new Node( 3 ); tree.root.right.left = new Node( 7 ); tree.root.right.right = new Node( 4 ); if (tree.check(tree.root)== true ) System.out.println( "YES" ); else System.out.println( "NO" ); } } // This code has been contributed by Mayank Jaiswal(mayank_24) |
Python3
# Python3 program to check if there # exist an edge whose removal creates # two trees of same size # utility function to create a new node class newNode: def __init__( self , x): self .data = x self .left = self .right = None # To calculate size of tree # with given root def count(root): if (root = = None ): return 0 return (count(root.left) + count(root.right) + 1 ) # This function returns true if there # is an edge whose removal can divide # the tree in two halves n is size of tree def checkRec(root, n): # Base cases if (root = = None ): return False # Check for root if (count(root) = = n - count(root)): return True # Check for rest of the nodes return (checkRec(root.left, n) or checkRec(root.right, n)) # This function mainly uses checkRec() def check(root): # Count total nodes in given tree n = count(root) # Now recursively check all nodes return checkRec(root, n) # Driver code if __name__ = = '__main__' : root = newNode( 5 ) root.left = newNode( 1 ) root.right = newNode( 6 ) root.left.left = newNode( 3 ) root.right.left = newNode( 7 ) root.right.right = newNode( 4 ) if check(root): print ( "YES" ) else : print ( "NO" ) # This code is contributed by PranchalK |
C#
// C# program to check if there exist // an edge whose removal creates two // trees of same size using System; public class Node { public int key; public Node left, right; public Node( int key) { this .key = key; left = right = null ; } } class GFG { public Node root; // To calculate size of tree with given root public virtual int count(Node node) { if (node == null ) { return 0; } return count(node.left) + count(node.right) + 1; } // This function returns true if there // is an edge whose removal can divide // the tree in two halves n is size of tree public virtual bool checkRec(Node node, int n) { // Base cases if (node == null ) { return false ; } // Check for root if (count(node) == n - count(node)) { return true ; } // Check for rest of the nodes return checkRec(node.left, n) || checkRec(node.right, n); } // This function mainly uses checkRec() public virtual bool check(Node node) { // Count total nodes in given tree int n = count(node); // Now recursively check all nodes return checkRec(node, n); } // Driver code public static void Main( string [] args) { GFG tree = new GFG(); tree.root = new Node(5); tree.root.left = new Node(1); tree.root.right = new Node(6); tree.root.left.left = new Node(3); tree.root.right.left = new Node(7); tree.root.right.right = new Node(4); if (tree.check(tree.root) == true ) { Console.WriteLine( "YES" ); } else { Console.WriteLine( "NO" ); } } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript program to check if // there exist an edge whose // removal creates two trees of same size class Node { constructor(key) { this .key=key; this .left= this .right= null ; } } // To calculate size of tree // with given root function count(node) { if (node == null ) return 0; return count(node.left) + count(node.right) + 1; } // This function returns true // if there is an edge // whose removal can divide the // tree in two halves // n is size of tree function checkRec(node,n) { // Base cases if (node == null ) return false ; // Check for root if (count(node) == n - count(node)) return true ; // Check for rest of the nodes return checkRec(node.left, n) || checkRec(node.right, n); } // This function mainly uses checkRec() function check(node) { // Count total nodes in given tree let n = count(node); // Now recursively check all nodes return checkRec(node, n); } // Driver code let root = new Node(5); root.left = new Node(1); root.right = new Node(6); root.left.left = new Node(3); root.right.left = new Node(7); root.right.right = new Node(4); if (check(root)== true ) document.write( "YES" ); else document.write( "NO" ); // This code is contributed by unknown2108 </script> |
YES
Time complexity: O(n2) where n is number of nodes in given Binary Tree.
Auxiliary Space: O(n) for call stack since using recursion, where n is no of nodes in binary tree
Method 2 (Efficient): We can find the solution in O(n) time. The idea is to traverse tree in bottom up manner and while traversing keep updating size and keep checking if there is a node that follows the required property.
Below is the implementation of above idea.
C++
// C++ program to check if there exist an edge whose // removal creates two trees of same size #include<bits/stdc++.h> using namespace std; struct Node { int data; struct Node* left, *right; }; // utility function to create a new node struct Node* newNode( int x) { struct Node* temp = new Node; temp->data = x; temp->left = temp->right = NULL; return temp; }; // To calculate size of tree with given root int count(Node* root) { if (root==NULL) return 0; return count(root->left) + count(root->right) + 1; } // This function returns size of tree rooted with given // root. It also set "res" as true if there is an edge // whose removal divides tree in two halves. // n is size of tree int checkRec(Node* root, int n, bool &res) { // Base case if (root == NULL) return 0; // Compute sizes of left and right children int c = checkRec(root->left, n, res) + 1 + checkRec(root->right, n, res); // If required property is true for current node // set "res" as true if (c == n-c) res = true ; // Return size return c; } // This function mainly uses checkRec() bool check(Node *root) { // Count total nodes in given tree int n = count(root); // Initialize result and recursively check all nodes bool res = false ; checkRec(root, n, res); return res; } // Driver code int main() { struct Node* root = newNode(5); root->left = newNode(1); root->right = newNode(6); root->left->left = newNode(3); root->right->left = newNode(7); root->right->right = newNode(4); check(root)? printf ( "YES" ) : printf ( "NO" ); return 0; } |
Java
// Java program to check if there exist an edge whose // removal creates two trees of same size class Node { int key; Node left, right; public Node( int key) { this .key = key; left = right = null ; } } class Res { boolean res = false ; } class BinaryTree { Node root; // To calculate size of tree with given root int count(Node node) { if (node == null ) return 0 ; return count(node.left) + count(node.right) + 1 ; } // This function returns size of tree rooted with given // root. It also set "res" as true if there is an edge // whose removal divides tree in two halves. // n is size of tree int checkRec(Node root, int n, Res res) { // Base case if (root == null ) return 0 ; // Compute sizes of left and right children int c = checkRec(root.left, n, res) + 1 + checkRec(root.right, n, res); // If required property is true for current node // set "res" as true if (c == n - c) res.res = true ; // Return size return c; } // This function mainly uses checkRec() boolean check(Node root) { // Count total nodes in given tree int n = count(root); // Initialize result and recursively check all nodes Res res = new Res(); checkRec(root, n, res); return res.res; } // Driver code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 5 ); tree.root.left = new Node( 1 ); tree.root.right = new Node( 6 ); tree.root.left.left = new Node( 3 ); tree.root.right.left = new Node( 7 ); tree.root.right.right = new Node( 4 ); if (tree.check(tree.root) == true ) System.out.println( "YES" ); else System.out.println( "NO" ); } } // This code has been contributed by Mayank Jaiswal(mayank_24) |
Python3
# Python3 program to check if there exist # an edge whose removal creates two trees # of same size class Node: def __init__( self , x): self .key = x self .left = None self .right = None # To calculate size of tree with # given root def count(node): if (node = = None ): return 0 return (count(node.left) + count(node.right) + 1 ) # This function returns size of tree rooted # with given root. It also set "res" as true # if there is an edge whose removal divides # tree in two halves.n is size of tree def checkRec(root, n): global res # Base case if (root = = None ): return 0 # Compute sizes of left and right children c = (checkRec(root.left, n) + 1 + checkRec(root.right, n)) # If required property is true for # current node set "res" as true if (c = = n - c): res = True # Return size return c # This function mainly uses checkRec() def check(root): # Count total nodes in given tree n = count(root) # Initialize result and recursively # check all nodes # bool res = false; checkRec(root, n) # Driver code if __name__ = = '__main__' : res = False root = Node( 5 ) root.left = Node( 1 ) root.right = Node( 6 ) root.left.left = Node( 3 ) root.right.left = Node( 7 ) root.right.right = Node( 4 ) check(root) if res: print ( "YES" ) else : print ( "NO" ) # This code is contributed by mohit kumar 29 |
C#
// C# program to check if there exist an edge whose // removal creates two trees of same size using System; public class Node { public int key; public Node left, right; public Node( int key) { this .key = key; left = right = null ; } } public class Res { public bool res = false ; } public class BinaryTree { public Node root; // To calculate size of tree with given root public virtual int count(Node node) { if (node == null ) { return 0; } return count(node.left) + count(node.right) + 1; } // This function returns size of tree rooted with given // root. It also set "res" as true if there is an edge // whose removal divides tree in two halves. // n is size of tree public virtual int checkRec(Node root, int n, Res res) { // Base case if (root == null ) { return 0; } // Compute sizes of left and right children int c = checkRec(root.left, n, res) + 1 + checkRec(root.right, n, res); // If required property is true for current node // set "res" as true if (c == n - c) { res.res = true ; } // Return size return c; } // This function mainly uses checkRec() public virtual bool check(Node root) { // Count total nodes in given tree int n = count(root); // Initialize result and recursively check all nodes Res res = new Res(); checkRec(root, n, res); return res.res; } // Driver code public static void Main( string [] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(5); tree.root.left = new Node(1); tree.root.right = new Node(6); tree.root.left.left = new Node(3); tree.root.right.left = new Node(7); tree.root.right.right = new Node(4); if (tree.check(tree.root) == true ) { Console.WriteLine( "YES" ); } else { Console.WriteLine( "NO" ); } } } // This code is contributed by Shrikant13 |
Javascript
<script> // javascript program to check if there exist an edge whose // removal creates two trees of same size class Node { constructor(key) { this .key = key; this .left = this .right = null ; } } class Res { constructor(){ this .res = false ; } } var root; // To calculate size of tree with given root function count( node) { if (node == null ) return 0; return count(node.left) + count(node.right) + 1; } // This function returns size of tree rooted with given // root. It also set "res" as true if there is an edge // whose removal divides tree in two halves. // n is size of tree function checkRec( root , n, res) { // Base case if (root == null ) return 0; // Compute sizes of left and right children var c = checkRec(root.left, n, res) + 1 + checkRec(root.right, n, res); // If required property is true for current node // set "res" as true if (c == n - c) res.res = true ; // Return size return c; } // This function mainly uses checkRec() function check( root) { // Count total nodes in given tree var n = count(root); // Initialize result and recursively check all nodes res = new Res(); checkRec(root, n, res); return res.res; } // Driver code root = new Node(5); root.left = new Node(1); root.right = new Node(6); root.left.left = new Node(3); root.right.left = new Node(7); root.right.right = new Node(4); if (check(root) == true ) document.write( "YES" ); else document.write( "NO" ); // This code contributed by umadevi9616 </script> |
YES
Time Complexity: O(n)
Auxiliary Space: O(n)
This article is contributed by Asaad Akram. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...