Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if it is possible to reach destination in even number of steps in an Infinite Matrix

  • Difficulty Level : Medium
  • Last Updated : 01 Sep, 2021

Given a source and destination in a matrix[][] of infinite rows and columns, the task is to find whether it is possible to reach the destination from the source in an even number of steps. Also, you can only move up, down, left, and right.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: Source = {2, 1}, Destination = {1, 4}
Output: Yes



Input: Source = {2, 2}, Destination = {1, 4}
Output: No

Observation:

The observation is that if the steps required to reach the destination in the shortest path is even, then steps required in every other route to reach it will always be even. Also, there can be an infinite number of ways to reach the target point. Some paths to reach (4, 1) from (1, 2) in a 4 x 5 matrix are given below :

Minimum number of steps required =4

So our problem is reduced in finding the minimum number of steps required to reach the destination from source in a matrix, which can be calculated easily by simply taking the sum of the absolute values of the difference between the X coordinates and Y coordinates.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check destination can be
// reached from source in even number of
// steps
void IsEvenPath(int Source[], int Destination[])
{
    // Coordinates differences
    int x_dif = abs(Source[0] - Destination[0]);
    int y_dif = abs(Source[1] - Destination[1]);
 
    // minimum number of steps required
    int minsteps = x_dif + y_dif;
 
    // Minsteps is even
    if (minsteps % 2 == 0)
        cout << "Yes";
 
    // Minsteps is odd
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    // Given Input
    int Source[] = { 2, 1 };
    int Destination[] = { 1, 4 };
 
    // Function Call
    IsEvenPath(Source, Destination);
 
    return 0;
}


Java




// Java program for the above approach
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to check destination can be
// reached from source in even number of
// steps
static void IsEvenPath(int Source[], int Destination[])
{
     
    // Coordinates differences
    int x_dif = Math.abs(Source[0] - Destination[0]);
    int y_dif = Math.abs(Source[1] - Destination[1]);
 
    // Minimum number of steps required
    int minsteps = x_dif + y_dif;
 
    // Minsteps is even
    if (minsteps % 2 == 0)
        System.out.println("Yes");
 
    // Minsteps is odd
    else
        System.out.println("No");
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    int Source[] = { 2, 1 };
    int Destination[] = { 1, 4 };
 
    // Function Call
    IsEvenPath(Source, Destination);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to check destination can be
# reached from source in even number of
# steps
def IsEvenPath(Source, Destination):
 
    # Coordinates differences
    x_dif = abs(Source[0] - Destination[0])
    y_dif = abs(Source[1] - Destination[1])
 
    # Minimum number of steps required
    minsteps = x_dif + y_dif
 
    # Minsteps is even
    if (minsteps % 2 == 0):
        print("Yes")
 
    # Minsteps is odd
    else:
        print("No")
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    Source = [ 2, 1 ]
    Destination = [ 1, 4 ]
 
    # Function Call
    IsEvenPath(Source, Destination)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check destination can be
// reached from source in even number of
// steps
static void IsEvenPath(int[] Source, int[] Destination)
{
     
    // Coordinates differences
    int x_dif = Math.Abs(Source[0] - Destination[0]);
    int y_dif = Math.Abs(Source[1] - Destination[1]);
 
    // Minimum number of steps required
    int minsteps = x_dif + y_dif;
 
    // Minsteps is even
    if (minsteps % 2 == 0)
        Console.WriteLine("Yes");
 
    // Minsteps is odd
    else
        Console.WriteLine("No");
}
 
// Driver code
public static void Main(string[] args)
{
    // Given Input
    int[] Source = { 2, 1 };
    int[] Destination = { 1, 4 };
 
    // Function Call
    IsEvenPath(Source, Destination);
}
}
 
// This code is contributed by code_hunt.


Javascript




<script>
       // JavaScript Program for the above approach
 
       // Function to check destination can be
       // reached from source in even number of
       // steps
       function IsEvenPath(Source, Destination)
       {
        
           // Coordinates differences
           let x_dif = Math.abs(Source[0] - Destination[0]);
           let y_dif = Math.abs(Source[1] - Destination[1]);
 
           // minimum number of steps required
           let minsteps = x_dif + y_dif;
 
           // Minsteps is even
           if (minsteps % 2 == 0)
               document.write("Yes");
 
           // Minsteps is odd
           else
               document.write("No");
       }
 
       // Driver Code
 
       // Given Input
       let Source = [2, 1];
       let Destination = [1, 4];
 
       // Function Call
       IsEvenPath(Source, Destination);
 
   // This code is contributed by Potta Lokesh
   </script>


Output

Yes

Time Complexity: O(1)
Auxiliary Space: O(1)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :