# Check if it is possible to create a polygon with a given angle

• Difficulty Level : Easy
• Last Updated : 03 May, 2021

Given an angle where, . The task is to check whether it is possible to make a regular polygon with all of its interior angle equal to . If possible then print “YES”, otherwise print “NO” (without quotes).
Examples:

Input: angle = 90
Output: YES
Polygons with sides 4 is
possible with angle 90 degrees.

Input: angle = 30
Output: NO

Approach: The Interior angle is defined as the angle between any two adjacent sides of a regular polygon.
It is given by where, n is the number of sides in the polygon.
This can be written as .
On rearranging terms we get, .
Thus, if n is an Integer the answer is “YES” otherwise, answer is “NO”.
Below is the implementation of the above approach:

## C++

 // C++ implementation of above approach #include  using namespace std;   // Function to check whether it is possible // to make a regular polygon with a given angle. void makePolygon(float a) {     // N denotes the number of sides     // of polygons possible     float n = 360 / (180 - a);     if (n == (int)n)         cout << "YES";     else         cout << "NO"; }   // Driver code int main() {     float a = 90;       // function to print the required answer     makePolygon(a);       return 0; }

## Java

 class GFG  { // Function to check whether  // it is possible to make a // regular polygon with a given angle.  static void makePolygon(double a)  {      // N denotes the number of      // sides of polygons possible      double n = 360 / (180 - a);      if (n == (int)n)          System.out.println("YES");      else         System.out.println("NO");  }    // Driver code  public static void main (String[] args)  {     double a = 90;        // function to print     // the required answer      makePolygon(a);  } }   // This code is contributed by Bilal

## Python3

 # Python 3 implementation  # of above approach    # Function to check whether  # it is possible to make a # regular polygon with a  # given angle.  def makePolygon(a) :       # N denotes the number of sides      # of polygons possible     n = 360 / (180 - a)       if n == int(n) :         print("YES")       else :         print("NO")   # Driver Code if __name__ == "__main__" :     a = 90       # function calling      makePolygon(a)       # This code is contributed  # by ANKITRAI1

## C#

 // C# implementation of  // above approach using System;   class GFG  { // Function to check whether  // it is possible to make a // regular polygon with a  // given angle.  static void makePolygon(double a)  {      // N denotes the number of      // sides of polygons possible      double n = 360 / (180 - a);      if (n == (int)n)          Console.WriteLine("YES");      else         Console.WriteLine("NO");  }    // Driver code  static void Main()  {     double a = 90;        // function to print     // the required answer      makePolygon(a);  } }   // This code is contributed by mits

## PHP

 

## Javascript

 

Output:

YES

My Personal Notes arrow_drop_up
Recommended Articles
Page :