Skip to content
Related Articles

Related Articles

Check if array can be divided into two subsequences merging whom makes Array sorted

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 18 Aug, 2022
View Discussion
Improve Article
Save Article

Given an integer array A[] of size N, the task is to check if the array can be divided into two subsequences such that appending one of them at the end of the other makes the array sorted.

A sub-sequence is a sequence that can be obtained from the array by deleting some or no elements from it. It may or may not be a continuous part of an array.

Examples:

Input: arr[] = {1, 4, 5, 2, 3, 4}
Output: Yes
Explanation :
First Sub-Sequence (P) :  {1, 2, 3, 4};
Second Sub-Sequence (Q) : {4, 5};
Merging both Sub-Sequence Gives Sorted Array: 
P+Q = {1, 2, 3, 4} + {4, 5} = {1, 2, 3, 4, 4, 5}

Input: arr[] = {1, 4, 6, 3, 5}
Output: No

 

Approach: The idea behind solving the problem is:

Make a copy of the array and sort the copy. Find two increasing subsequences from the array which match the order of the sorted copy. If the combined elements of both the subsequences form the duplicate of sorted array then such subsequences are possible.

Follow the steps mentioned below to implement the idea:

  • Make a temp[] array which stores all the element of input array. 
  • Sort the  temp[] array.  
  • Iterate twice on unsorted input array and try to find two sorted sub – sequences, having an order same as in temp[] array.
    • Merge these two subsequences.
    • If the merged array is a duplicate of the temp[] array then the requirement is satisfied.
  • If such subsequences are not possible, return “No” as the answer.

Follow the below illustration for a better understanding. 

Illustration:

Consider array arr[] = {1, 4, 5, 2, 3, 4};
Thus, temp[] array (sorted of input array): {1, 2, 3, 4, 4, 5};

First Iteration (finding first sorted subsequence): 
        => We will get elements 1, 2, 3, and 4 which maintains the order as in temp[], 
        => Store them in another array: {1, 2, 3, 4}.  

Second Iteration (finding second sorted subsequence): 
        => We will get 4, 5. 
        => Now add these elements also in the new array: {1, 2, 3, 4, 4, 5}.

2 iterations have been completed. 
temp[] = new array

So the output will be “Yes”. 

Below is the implementation of this approach: 

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if two subsequences exist
void solve(int arr1[], int n)
{
   
    // Temporary array, which will contain
    // same element and in sorted order
    // of input array
    int temp[n];
 
    for (int i = 0; i < n; i++) {
        temp[i] = arr1[i];
    }
    sort(temp, temp + n);
 
    // Counter to iterate on temp[] array
    // to find elements in sorted manner.
    int counter = 0;
 
    // New array which will store searched elements
    // in two iterations.
    int arr[n];
 
    // Loop for searching twice in input array.
    for (int i = 0; i < 2; i++) {
 
        // Loop to search for elements in
        // sorted manner in input array.
        for (int j = 0; j < n; j++) {
 
            // When element at temp[counter]
            // and arr1[j] matches.
            if (arr1[j] == temp[counter]) {
 
                // Storing that element in array
                arr[counter] = arr1[j];
 
                counter++;
                if (counter == n) {
                    break;
                }
            }
        }
    }
    bool flag = true;
    for (int i = 0; i < n; i++) {
        if (arr[i] != temp[i]) {
            flag = false;
            break;
        }
    }
    if (flag == true)
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 4, 5, 2, 3, 4 };
    int n = 6;
    // Function call
    solve(arr, n);
    return 0;
}
 
// This code is contributed by Rohit Pradhan


Java




// Java code to implement the approach
 
import java.util.*;
 
class GFG {
   
    // Function to check if two subsequences exist
    public static void solve(int[] arr1)
    {
        // Temporary array, which will contain
        // same element and in sorted order
        // of input array
        int[] temp = new int[arr1.length];
 
        for (int i = 0; i < arr1.length; i++) {
            temp[i] = arr1[i];
        }
        Arrays.sort(temp);
 
        // Counter to iterate on temp[] array
        // to find elements in sorted manner.
        int counter = 0;
 
        // New array which will store searched elements
        // in two iterations.
        int[] arr = new int[arr1.length];
 
        // Loop for searching twice in input array.
        for (int i = 0; i < 2; i++) {
 
            // Loop to search for elements in
            // sorted manner in input array.
            for (int j = 0; j < arr1.length; j++) {
 
                // When element at temp[counter]
                // and arr1[j] matches.
                if (arr1[j] == temp[counter]) {
 
                    // Storing that element in array
                    arr[counter] = arr1[j];
 
                    counter++;
                    if (counter == temp.length) {
                        break;
                    }
                }
            }
        }
        System.out.println(Arrays.equals(arr, temp) == true
                               ? "Yes"
                               : "No");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 4, 5, 2, 3, 4 };
       
        // Function call
        solve(arr);
    }
}


Python3




# Python3 code to implement the approach
 
# Function to check if two subsequences exist
def solve(arr1, n) :
   
    # Temporary array, which will contain
    # same element and in sorted order
    # of input array
    temp = [0] * n;
 
    for i in range(n) :
        temp[i] = arr1[i];
 
    temp.sort();
 
    # Counter to iterate on temp[] array
    # to find elements in sorted manner.
    counter = 0;
 
    # New array which will store searched elements
    # in two iterations.
    arr = [0] * n;
 
    # Loop for searching twice in input array.
    for i in range(2) :
 
        # Loop to search for elements in
        # sorted manner in input array.
        for j in range(n) :
 
            # When element at temp[counter]
            # and arr1[j] matches.
            if (arr1[j] == temp[counter]) :
 
                # Storing that element in array
                arr[counter] = arr1[j];
 
                counter += 1;
                if (counter == n) :
                    break;
              
    flag = True;
    for i in range(n) :
        if (arr[i] != temp[i]) :
            flag = False;
            break;
             
    if (flag == True) :
        print("Yes");
    else :
        print("No");
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 1, 4, 5, 2, 3, 4 ];
    n = 6;
    # Function call
    solve(arr, n);
   
    # This code is contributed by Rohit Pradhan


C#




// C# code to implement the approach
using System;
 
class GFG {
 
  // Function to check if two subsequences exist
  public static void solve(int[] arr1)
  {
    // Temporary array, which will contain
    // same element and in sorted order
    // of input array
 
    int[] temp = new int[arr1.Length];
 
    for (int i = 0; i < arr1.Length; i++) {
      temp[i] = arr1[i];
    }
    Array.Sort(temp);
 
    // Counter to iterate on temp[] array
    // to find elements in sorted manner.
    int counter = 0;
 
    // New array which will store searched elements
    // in two iterations.
    int[] arr = new int[arr1.Length];
 
    // Loop for searching twice in input array.
    for (int i = 0; i < 2; i++) {
 
      // Loop to search for elements in
      // sorted manner in input array.
      for (int j = 0; j < arr1.Length; j++) {
 
        // When element at temp[counter]
        // and arr1[j] matches.
        if (arr1[j] == temp[counter]) {
 
          // Storing that element in array
          arr[counter] = arr1[j];
 
          counter++;
          if (counter == temp.Length) {
            break;
          }
        }
      }
    }
    bool isEqual = Array.Equals(arr, temp);
    Console.Write(!isEqual == true
                  ? "Yes"
                  : "No");
  }
 
  // Driver Code
  static public void Main (){
    int[] arr = { 1, 4, 5, 2, 3, 4 };
 
    // Function call
    solve(arr);
  }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




<script>
// Javascript code to implement the approach
 
// Function to check if two subsequences exist
function solve(arr1,n)
{
   
    // Temporary array, which will contain
    // same element and in sorted order
    // of input array
    let temp=new Array(n);
 
    for (let i = 0; i < n; i++) {
        temp[i] = arr1[i];
    }
     
     temp.sort(function(a, b) {
    return a - b;
    });
    // Counter to iterate on temp[] array
    // to find elements in sorted manner.
    let counter = 0;
 
    // New array which will store searched elements
    // in two iterations.
    let arr=new Array(n);
 
    // Loop for searching twice in input array.
    for (let i = 0; i < 2; i++) {
 
        // Loop to search for elements in
        // sorted manner in input array.
        for (let j = 0; j < n; j++) {
 
            // When element at temp[counter]
            // and arr1[j] matches.
            if (arr1[j] == temp[counter]) {
 
                // Storing that element in array
                arr[counter] = arr1[j];
 
                counter++;
                if (counter == n) {
                    break;
                }
            }
        }
    }
    let flag = true;
    for (let i = 0; i < n; i++) {
        if (arr[i] != temp[i]) {
            flag = false;
            break;
        }
    }
    if (flag == true)
        document.write("Yes");
    else
        document.write("No");
}
 
// Driver Code
 
    let arr = [ 1, 4, 5, 2, 3, 4 ];
    let n = 6;
    // Function call
    solve(arr, n);
     
    // This code is contributed by satwik4409.
    </script>


Output

Yes

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)    


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!