 Open in App
Not now

# Check if a number is divisible by 47 or not

• Last Updated : 22 Jul, 2022

Given a number N, the task is to check whether the number is divisible by 47 or not.
Examples:

Input: N = 1645
Output: yes
Explanation:
47 * 35 = 1645
Input: N = 4606
Output: yes
Explanation:
47 * 98 = 4606

Approach: The divisibility test of 47 is:

1. Extract the last digit.
2. Subtract 14 * last digit from the remaining number obtained after removing the last digit.
3. Repeat the above steps until a two-digit number, or zero, is obtained.
4. If the two-digit number is divisible by 47, or it is 0, then the original number is also divisible by 47.

For example:

```If N = 59173

Step 1:
N = 59173
Last digit = 3
Remaining number = 5917
Subtracting 14 times last digit
Resultant number = 5917 - 14*3 = 5875

Step 2:
N = 5875
Last digit = 5
Remaining number = 587
Subtracting 14 times last digit
Resultant number = 587 - 14*5 = 517

Step 3:
N = 517
Last digit = 7
Remaining number = 51
Subtracting 14 times last digit
Resultant number = 51 - 14*7 = -47

Step 4:
N = -47
Since N is a two-digit number,
and -47 is divisible by 47

Therefore N = 59173 is also divisible by 47```

Below is the implementation of the above approach:

## C++

 `// C++ program to check whether a number` `// is divisible by 47 or not` `#include` `#include`   `using` `namespace` `std;`   `// Function to check if the number is  divisible by 47 or not ` `bool` `isDivisible(``int` `n)  ` `{` `    ``int` `d;` `    ``// While there are at least two digits ` `    ``while` `(n / 100) ` `    ``{` ` `  `        ``// Extracting the last ` `        ``d = n % 10;` ` `  `        ``// Truncating the number ` `        ``n /= 10;` ` `  `        ``// Subtracting fourteen times the last ` `        ``// digit to the remaining number ` `        ``n = ``abs``(n-(d * 14));` `    ``}` `    ``// Finally return if the two-digit` `    ``// number is divisible by 47 or not` `    ``return` `(n % 47 == 0) ;` `}`   `// Driver Code ` `int` `main() {` `    ``int` `N = 59173;` ` `  `    ``if` `(isDivisible(N)) ` `        ``cout<<``"Yes"``<

## Java

 `// Java program to check whether a number` `// is divisible by 47 or not` `import` `java.util.*;`   `class` `GFG{` ` `  `// Function to check if the number is  divisible by 47 or not ` `static` `boolean` `isDivisible(``int` `n)  ` `{` `    ``int` `d;` `    `  `    ``// While there are at least two digits ` `    ``while` `((n / ``100``) > ``0``) ` `    ``{` `  `  `        ``// Extracting the last ` `        ``d = n % ``10``;` `  `  `        ``// Truncating the number ` `        ``n /= ``10``;` `  `  `        ``// Subtracting fourteen times the last ` `        ``// digit to the remaining number ` `        ``n = Math.abs(n - (d * ``14``));` `    ``}`   `    ``// Finally return if the two-digit` `    ``// number is divisible by 47 or not` `    ``return` `(n % ``47` `== ``0``) ;` `}` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) {` `    ``int` `N = ``59173``;` `  `  `    ``if` `(isDivisible(N)) ` `        ``System.out.print(``"Yes"``) ;` `    ``else` `        ``System.out.print(``"No"``);` `    `  ` ``}     ` `}    `   `// This code is contributed by PrinciRaj1992`

## Python 3

 `# Python program to check if a number` `# is divisible by 47 or not`   `# Function to check if the number is ` `# divisible by 47 or not ` `def` `isDivisible(n) : ` ` `  `    ``# While there are at least two digits ` `    ``while` `n ``/``/` `100` `: ` ` `  `        ``# Extracting the last ` `        ``d ``=` `n ``%` `10` ` `  `        ``# Truncating the number ` `        ``n ``/``/``=` `10` ` `  `        ``# Subtracting fourteen times the last ` `        ``# digit to the remaining number ` `        ``n ``=` `abs``(n``-` `(d ``*` `14``))` ` `  `    ``# Finally return if the two-digit` `    ``# number is divisible by 43 or not` `    ``return` `(n ``%` `47` `=``=` `0``) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"` `: ` `     `  `    ``n ``=` `59173`   `    ``if` `(isDivisible(n)) : ` `        ``print``(``"Yes"``) ` `    ``else` `: ` `        ``print``(``"No"``) `

## C#

 `// C# program to check whether a number` `// is divisible by 47 or not` `using` `System; ` `        `  `class` `GFG ` `{ ` `    `  `// Function to check if the number is divisible by 47 or not ` `static` `bool` `isDivisible(``int` `n) ` `{` `    ``int` `d;` `    `  `    ``// While there are at least two digits ` `    ``while` `(n / 100 > 0) ` `    ``{` `    `  `        ``// Extracting the last ` `        ``d = n % 10;` `    `  `        ``// Truncating the number ` `        ``n /= 10;` `    `  `        ``// Subtracting fourteen times the last ` `        ``// digit to the remaining number ` `        ``n = Math.Abs(n - (d * 14));` `    ``}` `    `  `    ``// Finally return if the two-digit` `    ``// number is divisible by 47 or not` `    ``return` `(n % 47 == 0);` `}` `    `  `// Driver Code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `N = 59173;` `    `  `    ``if` `(isDivisible(N)) ` `        ``Console.WriteLine(``"Yes"``);` `    ``else` `        ``Console.WriteLine(``"No"``);` `} ` `} `   `// This code is contributed by mohit kumar 29. `

## Javascript

 ``

## PHP

 ``

Output:

`Yes`

Time Complexity: O(log10N)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Related Articles