Skip to content
Related Articles
Open in App
Not now

Related Articles

Check if a number is a Pangram or not

Improve Article
Save Article
  • Last Updated : 31 Jan, 2023
Improve Article
Save Article

Given an integer N, the task is to check whether the given number is a pangram or not. 
Note: A Pangram Number contains every digit [0- 9] at least once.

Examples:

Input : N = 10239876540022
Output : Yes
Explanation: N contains all the digits from 0 to 9. Therefore, it is a pangram.

Input : N = 234567890
Output : No
Explanation: N doesn’t contain the digit 1. Therefore, it is not a pangram.

 

Set-based Approach: The idea is to use Sets to store the count of distinct digits present in N. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if N
// is a Pangram or not
string numberPangram(string N)
{
 
    // Add all characters pf arrNum to set
    set<char> setNum;
 
    for (int i = 0; i < N.length(); i++) {
        setNum.insert(N[i]);
    }
 
    // If the length of set is 10
    // The number is a Pangram
    if (setNum.size() == 10)
        return "True";
    else
        return "False";
}
 
// Driver code
int main()
{
    string N = "10239876540022";
    cout << (numberPangram(N));
}
 
// This code is contributed by ukasp.


Java




// Java implementation of above approach
import java.math.BigInteger;
import java.util.HashSet;
 
class GFG{
     
// Function to check if N
// is a Pangram or not
static String numberPangram(BigInteger N)
{
     
    // Stores equivalent string
    // representation of N
    String num = N.toString();
 
    // Convert the string to Character array
    char[] arrNum = num.toCharArray();
 
    // Add all characters pf arrNum to set
    HashSet<Character> setNum = new HashSet<Character>();
 
    for(char ch : arrNum)
    {
        setNum.add(ch);
    }
     
    // If the length of set is 10
    // The number is a Pangram
    if (setNum.size() == 10)
        return "True";
    else
        return "False";
}
 
// Driver code
public static void main(String[] args)
{
    BigInteger N = new BigInteger("10239876540022");
    System.out.print(numberPangram(N));
}
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 implementation of above approach
 
# Function to check if N
# is a Pangram or not
def numberPangram(N):
   
    # Stores equivalent string
    # representation of N
    num = str(N)
     
    # Convert the string to set
    setnum = set(num)
     
    # If the length of set is 10
    if(len(setnum) == 10):
       
          # The number is a Pangram
        return True
    else:
        return False
 
 
# Driver Code
 
N = 10239876540022
print(numberPangram(N))


C#




// C# implementation of above approach
using System;
using System.Globalization;
using System.Numerics;
using System.Collections.Generic;
class GFG
{
     
// Function to check if N
// is a Pangram or not
static String numberPangram(ulong  N)
{
     
    // Stores equivalent string
    // representation of N
    string num = N.ToString();
 
    // Convert the string to Character array
    char[] arrNum = num.ToCharArray();
 
    // Add all characters pf arrNum to set
   HashSet<char> setNum = new HashSet<char>();
 
    foreach(char ch in arrNum)
    {
        setNum.Add(ch);
    }
     
    // If the length of set is 10
    // The number is a Pangram
    if (setNum.Count == 10)
        return "True";
    else
        return "False";
}
 
// Driver Code
    static void Main() {
      ulong  N = 10239876540022;
      Console.Write(numberPangram(N));
      }
}
 
// This code is contributed by SoumikMondal


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to check if N
// is a Pangram or not
function numberPangram(N)
{
 
    // Add all characters pf arrNum to set
    var setNum = new Set();
 
    for (var i = 0; i < N.length; i++) {
        setNum.add(N[i]);
    }
 
    // If the length of set is 10
    // The number is a Pangram
    if (setNum.size == 10)
        return "True";
    else
        return "False";
}
 
// Driver code
var N = "10239876540022";
document.write(numberPangram(N));
 
</script>


Output: 

True

 

Time Complexity: O(log10N * log(log10N))
Auxiliary Space: O(1)

Hashing-based Approach: Follow the steps to solve the problem:

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <iostream>
#include <string>
#include <map>
 
bool numberPangram(long N) {
    // Stores equivalent string representation of N
    std::string num = std::to_string(N);
 
    // Count frequencies of digits present in N
    std::map<char, int> frequency;
    for (int i = 0; i < num.length(); i++) {
        char digit = num[i];
        frequency[digit]++;
    }
 
    // If the size of the map frequency is 10
    if (frequency.size() == 10) {
        // The number is a Pangram
        return true;
    } else {
        return false;
    }
}
 
// Driver code
int main() {
    long N = 10239876540022;
    std::cout <<  (numberPangram(N) ? "true" : "false") << std::endl;
    return 0;
}
 
 
// This code is contributed by phasing17


Java




import java.util.*;
 
class GFG {
 
  // Driver code
  public static void main(String[] args) {
    long N = 10239876540022L;
    boolean result = numberPangram(N);
    System.out.println(result);
  }
 
  public static boolean numberPangram(long N) {
 
    // Stores equivalent string representation of N
    String num = Long.toString(N);
 
    // Count frequencies of digits present in N
    Map<Character, Integer> frequency = new HashMap<>();
    for (int i = 0; i < num.length(); i++) {
      char digit = num.charAt(i);
      if (frequency.containsKey(digit)) {
        frequency.put(digit, frequency.get(digit) + 1);
      } else {
        frequency.put(digit, 1);
      }
    }
 
    // If the length of the dictionary frequency is 10
    if (frequency.size() == 10)
    {
       
      // The number is a Pangram
      return true;
    } else {
      return false;
    }
  }
}
 
// This code is contributed by phasing17.


Python3




# Python implementation of above approach
 
from collections import Counter
 
# Function to check if
# N is a Pangram or not
def numberPangram(N):
   
    # Stores equivalent string
    # representation of N
    num = str(N)
     
    # Count frequencies of
    # digits present in N
    frequency = Counter(num)
     
    # If the length of the
    # dictionary frequency is 10
    if(len(frequency) == 10):
       
          # The number is a Pangram
        return True
    else:
        return False
 
 
# Driver Code
 
N =10239876540022
print(numberPangram(N))


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class GFG {
 
  // Driver Code
  static void Main(string[] args)
  {
    long N = 10239876540022L;
 
    // Function call
    bool result = NumberPangram(N);
    Console.WriteLine(result);
  }
 
  static bool NumberPangram(long N)
  {
    // Stores equivalent string representation of N
    string num = N.ToString();
 
    // Count frequencies of digits present in N
    Dictionary<char, int> frequency
      = new Dictionary<char, int>();
    for (int i = 0; i < num.Length; i++) {
      char digit = num[i];
      if (frequency.ContainsKey(digit)) {
        frequency[digit]++;
      }
      else {
        frequency.Add(digit, 1);
      }
    }
 
    // If the length of the dictionary frequency is 10
    if (frequency.Count == 10)
    {
 
      // The number is a Pangram
      return true;
    }
    else {
      return false;
    }
  }
}
 
// This code is contributed by phasing17.


Javascript




// JavaScript implementation of above approach
 
// Function to check if
// N is a Pangram or not
function numberPangram(N) {
 
    // Stores equivalent string
    // representation of N
    let num = N.toString();
 
    // Count frequencies of
    // digits present in N
    let frequency = {};
    for (let i = 0; i < num.length; i++) {
        let digit = num[i];
        if (frequency[digit]) {
            frequency[digit] += 1;
        } else {
            frequency[digit] = 1;
        }
    }
 
    // If the length of the
    // dictionary frequency is 10
    if (Object.keys(frequency).length === 10) {
        // The number is a Pangram
        return True;
    } else {
        return False;
    }
}
 
// Driver Code
let N = 10239876540022;
console.log(numberPangram(N));


Output: 

True

 

Time Complexity: O(log10N * log(log10N))
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!