Check if a number has prime count of divisors
Given an integer N, the task is to check if the count of divisors of N is prime or not.
Examples:
Input: N = 13
Output: Yes
The divisor count is 2 (1 and 13) which is prime.Input: N = 8
Output: No
The divisors are 1, 2, 4 and 8.
Approach: Please read this article to find the count of divisors of a number. So find the maximum value of i for every prime divisor p such that N % (pi) = 0. So the count of divisors gets multiplied by (i + 1). The count of divisors will be (i1 + 1) * (i2 + 1) * … * (ik + 1).
It can now be seen that there can only be one prime divisor for the maximum i and if N % pi = 0 then (i + 1) should be prime. The primality can be checked in sqrt(n) time and the prime factors can also be found in sqrt(n) time. So the overall time complexity will be O(sqrt(n)).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns true // if n is prime bool Prime( int n) { // There is no prime // less than 2 if (n < 2) return false ; // Run a loop from 2 to sqrt(n) for ( int i = 2; i <= sqrt (n); i++) // If there is any factor if (n % i == 0) return false ; return true ; } // Function that returns true if n // has a prime count of divisors bool primeCountDivisors( int n) { if (n < 2) return false ; // Find the prime factors for ( int i = 2; i <= sqrt (n); i++) if (n % i == 0) { // Find the maximum value of i for every // prime divisor p such that n % (p^i) == 0 long a = n, c = 0; while (a % i == 0) { a /= i; c++; } // If c+1 is a prime number and a = 1 if (a == 1 && Prime(c + 1)) return true ; // The number cannot have two factors // to have count of divisors prime else return false ; } // Else the number is prime so // it has only two divisors return true ; } // Driver code int main() { int n = 13; if (primeCountDivisors(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation of the approach class GFG { // Function that returns true // if n is prime static boolean Prime( int n) { // There is no prime // less than 2 if (n < 2 ) return false ; // Run a loop from 2 to sqrt(n) for ( int i = 2 ; i <= ( int )Math.sqrt(n); i++) // If there is any factor if (n % i == 0 ) return false ; return true ; } // Function that returns true if n // has a prime count of divisors static boolean primeCountDivisors( int n) { if (n < 2 ) return false ; // Find the prime factors for ( int i = 2 ; i <= ( int )Math.sqrt(n); i++) if (n % i == 0 ) { // Find the maximum value of i for every // prime divisor p such that n % (p^i) == 0 long a = n, c = 0 ; while (a % i == 0 ) { a /= i; c++; } // If c+1 is a prime number and a = 1 if (a == 1 && Prime(( int )c + 1 ) == true ) return true ; // The number cannot have two factors // to have count of divisors prime else return false ; } // Else the number is prime so // it has only two divisors return true ; } // Driver code public static void main (String[] args) { int n = 13 ; if (primeCountDivisors(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach from math import sqrt # Function that returns true # if n is prime def Prime(n) : # There is no prime # less than 2 if (n < 2 ) : return False ; # Run a loop from 2 to sqrt(n) for i in range ( 2 , int (sqrt(n)) + 1 ) : # If there is any factor if (n % i = = 0 ) : return False ; return True ; # Function that returns true if n # has a prime count of divisors def primeCountDivisors(n) : if (n < 2 ) : return False ; # Find the prime factors for i in range ( 2 , int (sqrt(n)) + 1 ) : if (n % i = = 0 ) : # Find the maximum value of i for every # prime divisor p such that n % (p^i) == 0 a = n; c = 0 ; while (a % i = = 0 ) : a / / = i; c + = 1 ; # If c + 1 is a prime number and a = 1 if (a = = 1 and Prime(c + 1 )) : return True ; # The number cannot have two factors # to have count of divisors prime else : return False ; # Else the number is prime so # it has only two divisors return True ; # Driver code if __name__ = = "__main__" : n = 13 ; if (primeCountDivisors(n)) : print ( "Yes" ); else : print ( "No" ); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { // Function that returns true // if n is prime static bool Prime( int n) { // There is no prime // less than 2 if (n < 2) return false ; // Run a loop from 2 to sqrt(n) for ( int i = 2; i <= ( int )Math.Sqrt(n); i++) // If there is any factor if (n % i == 0) return false ; return true ; } // Function that returns true if n // has a prime count of divisors static bool primeCountDivisors( int n) { if (n < 2) return false ; // Find the prime factors for ( int i = 2; i <= ( int )Math.Sqrt(n); i++) if (n % i == 0) { // Find the maximum value of i for every // prime divisor p such that n % (p^i) == 0 long a = n, c = 0; while (a % i == 0) { a /= i; c++; } // If c+1 is a prime number and a = 1 if (a == 1 && Prime(( int )c + 1) == true ) return true ; // The number cannot have two factors // to have count of divisors prime else return false ; } // Else the number is prime so // it has only two divisors return true ; } // Driver code public static void Main() { int n = 13; if (primeCountDivisors(n)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the approach // Function that returns true // if n is prime function Prime(n) { // There is no prime // less than 2 if (n < 2) return false ; // Run a loop from 2 to sqrt(n) for ( var i = 2; i <= Math.sqrt(n); i++) // If there is any factor if (n % i == 0) return false ; return true ; } // Function that returns true if n // has a prime count of divisors function primeCountDivisors( n) { if (n < 2) return false ; // Find the prime factors for ( var i = 2; i <= Math.sqrt(n); i++) if (n % i == 0) { // Find the maximum value of i for every // prime divisor p such that n % (p^i) == 0 var a = n, c = 0; while (a % i == 0) { a /= i; c++; } // If c+1 is a prime number and a = 1 if (a == 1 && Prime(c + 1)) return true ; // The number cannot have two factors // to have count of divisors prime else return false ; } // Else the number is prime so // it has only two divisors return true ; } // Driver rcode n = 13; if (primeCountDivisors(n)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by SoumikMondal </script> |
Yes
Time Complexity: O(sqrt(n)), as we are using a loop to traverse sqrt (n) times. Where n is the integer given as input.
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...