Check if a graph constructed from an array based on given conditions consists of a cycle or not
Given an array arr[] consisting of first N natural numbers, construct an undirected graph using the array elements such that for any array element, connect an edge with the next greater element on the left as well as right.
Examples:
Input: arr = {1, 2, 3, 4, 5}
Output: No
Explanation:
It is clear from the below image that final graph will be a tree.
Input: arr[] = {1, 4, 2, 5, 3}
Output: Yes
Naive Approach: The simplest approach is to construct the required graph using the above conditions and check if there exists any cycle of at least length 3 or not. If there exists a cycle, then print “Yes“. Otherwise, print “No“.
Time Complexity: O(N + E), where E is the number of edges.
Auxiliary Space: O(N)
Efficient Approach: The optimal idea is to check if the given permutation is unimodal or non-unimodal, i.e.simply check if there exists any array element with greater adjacent elements on both sides. If found to be true, print “Yes”. Otherwise, print “No”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the graph // constructed from given array // contains a cycle or not void isCycleExists( int arr[], int N) { bool valley = 0; // Traverse the array for ( int i = 1; i < N; i++) { // If arr[i] is less than // arr[i - 1] and arr[i] if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) { cout << "Yes" << endl; return ; } } cout << "No" ; } // Driver Code int main() { // Given array int arr[] = { 1, 3, 2, 4, 5 }; // Size of the array int N = sizeof (arr) / sizeof (arr[0]); isCycleExists(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to check if the graph // constructed from given array // contains a cycle or not static void isCycleExists( int [] arr, int N) { // Traverse the array for ( int i = 1 ; i < N; i++) { // If arr[i] is less than // arr[i - 1] and arr[i] if (arr[i] < arr[i - 1 ] && arr[i] < arr[i + 1 ]) { System.out.println( "Yes" ); return ; } } System.out.println( "No" ); } // Driver Code public static void main(String[] args) { // Given array int [] arr = { 1 , 3 , 2 , 4 , 5 }; // Size of the array int N = arr.length; isCycleExists(arr, N); } } // This code is contributed by Dharanendra L V. |
Python3
# Python3 program for the above approach # Function to check if the graph # constructed from given array # contains a cycle or not def isCycleExists(arr, N): valley = 0 # Traverse the array for i in range ( 1 , N): # If arr[i] is less than # arr[i - 1] and arr[i] if (arr[i] < arr[i - 1 ] and arr[i] < arr[i + 1 ]): print ( "Yes" ) return print ( "No" ) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 1 , 3 , 2 , 4 , 5 ] # Size of the array N = len (arr) isCycleExists(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG { // Function to check if the graph // constructed from given array // contains a cycle or not static void isCycleExists( int [] arr, int N) { // Traverse the array for ( int i = 1; i < N; i++) { // If arr[i] is less than // arr[i - 1] and arr[i] if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) { Console.WriteLine( "Yes" ); return ; } } Console.WriteLine( "No" ); } // Driver Code public static void Main() { // Given array int [] arr = { 1, 3, 2, 4, 5 }; // Size of the array int N = arr.Length; isCycleExists(arr, N); } } // This code is contributed by chitranayal. |
Javascript
<script> // Javascript program for the above approach // Function to check if the graph // constructed from given array // contains a cycle or not function isCycleExists(arr,N) { // Traverse the array for (let i = 1; i < N; i++) { // If arr[i] is less than // arr[i - 1] and arr[i] if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) { document.write( "Yes" ); return ; } } document.write( "No" ); } // Driver Code let arr=[1, 3, 2, 4, 5 ]; // Size of the array let N = arr.length; isCycleExists(arr, N); // This code is contributed by avanitrachhadiya2155 </script> |
Yes
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...