Check if four segments form a rectangle
We are given four segments as a pair of coordinates of their end points. We need to tell whether those four line segments make a rectangle or not.
Examples:
Input : segments[] = [(4, 2), (7, 5), (2, 4), (4, 2), (2, 4), (5, 7), (5, 7), (7, 5)] Output : Yes Given these segment make a rectangle of length 3X2. Input : segment[] = [(7, 0), (10, 0), (7, 0), (7, 3), (7, 3), (10, 2), (10, 2), (10, 0)] Output : Not These segments do not make a rectangle. Above examples are shown in below diagram.
This problem is mainly an extension of How to check if given four points form a square
We can solve this problem by using properties of a rectangle. First, we check total unique end points of segments, if count of these points is not equal to 4 then the line segment can’t make a rectangle. Then we check distances between all pair of points, there should be at most 3 different distances, one for diagonal and two for sides and at the end we will check the relation among these three distances, for line segments to make a rectangle these distance should satisfy Pythagorean relation because sides and diagonal of rectangle makes a right angle triangle. If they satisfy mentioned conditions then we will flag polygon made by line segment as rectangle otherwise not.
CPP
// C++ program to check whether it is possible // to make a rectangle from 4 segments #include <bits/stdc++.h> using namespace std; #define N 4 // structure to represent a segment struct Segment { int ax, ay; int bx, by; }; // Utility method to return square of distance // between two points int getDis(pair< int , int > a, pair< int , int > b) { return (a.first - b.first)*(a.first - b.first) + (a.second - b.second)*(a.second - b.second); } // method returns true if line Segments make // a rectangle bool isPossibleRectangle(Segment segments[]) { set< pair< int , int > > st; // putting all end points in a set to // count total unique points for ( int i = 0; i < N; i++) { st.insert(make_pair(segments[i].ax, segments[i].ay)); st.insert(make_pair(segments[i].bx, segments[i].by)); } // If total unique points are not 4, then // they can't make a rectangle if (st.size() != 4) return false ; // dist will store unique 'square of distances' set< int > dist; // calculating distance between all pair of // end points of line segments for ( auto it1=st.begin(); it1!=st.end(); it1++) for ( auto it2=st.begin(); it2!=st.end(); it2++) if (*it1 != *it2) dist.insert(getDis(*it1, *it2)); // if total unique distance are more than 3, // then line segment can't make a rectangle if (dist.size() > 3) return false ; // copying distance into array. Note that set maintains // sorted order. int distance[3]; int i = 0; for ( auto it = dist.begin(); it != dist.end(); it++) distance[i++] = *it; // If line seqments form a square if (dist.size() == 2) return (2*distance[0] == distance[1]); // distance of sides should satisfy pythagorean // theorem return (distance[0] + distance[1] == distance[2]); } // Driver code to test above methods int main() { Segment segments[] = { {4, 2, 7, 5}, {2, 4, 4, 2}, {2, 4, 5, 7}, {5, 7, 7, 5} }; (isPossibleRectangle(segments))?cout << "Yes\n" :cout << "No\n" ; } |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; // java program to check whether it is possible // to make a rectangle from 4 segments public class Main { static int N = 4 ; // Utility method to return square of distance // between two points public static int getDis(String a, String b) { String[] a1 = a.split( "," ); String[] b1 = b.split( "," ); return (Integer.parseInt(a1[ 0 ]) - Integer.parseInt(b1[ 0 ]))*(Integer.parseInt(a1[ 0 ]) - Integer.parseInt(b1[ 0 ])) + (Integer.parseInt(a1[ 1 ]) - Integer.parseInt(b1[ 1 ]))*(Integer.parseInt(a1[ 1 ]) - Integer.parseInt(b1[ 1 ])); } // method returns true if line Segments make // a rectangle public static boolean isPossibleRectangle( int [][] segments) { HashSet<String> st = new HashSet<>(); // putting all end points in a set to // count total unique points for ( int i = 0 ; i < N; i++) { st.add(segments[i][ 0 ] + "," + segments[i][ 1 ]); st.add(segments[i][ 2 ] + "," + segments[i][ 3 ]); } // If total unique points are not 4, then // they can't make a rectangle if (st.size() != 4 ) return false ; // dist will store unique 'square of distances' HashSet<Integer> dist = new HashSet<>(); // calculating distance between all pair of // end points of line segments for (String it1 : st){ for (String it2 : st){ if (it1 != it2){ dist.add(getDis(it1, it2)); } } } // if total unique distance are more than 3, // then line segment can't make a rectangle if (dist.size() > 3 ) return false ; // copying distance into array. Note that set maintains // sorted order. int [] distance = new int [ 3 ]; int i = 0 ; for ( int it: dist){ distance[i] = it; i = i + 1 ; } // If line seqments form a square if (dist.size() == 2 ) return ( 2 *distance[ 0 ] == distance[ 1 ]); // distance of sides should satisfy pythagorean // theorem return (distance[ 0 ] + distance[ 1 ] == distance[ 2 ]); } public static void main(String[] args) { int [][] segments = { { 4 , 2 , 7 , 5 }, { 2 , 4 , 4 , 2 }, { 2 , 4 , 5 , 7 }, { 5 , 7 , 7 , 5 } }; if (isPossibleRectangle(segments) == true ){ System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } // The code is contributed by Nidhi goel. |
Python3
# Python program to check whether it is possible # to make a rectangle from 4 segments N = 4 # Utility method to return square of distance # between two points def getDis(a, b): return (a[ 0 ] - b[ 0 ]) * (a[ 0 ] - b[ 0 ]) + (a[ 1 ] - b[ 1 ]) * (a[ 1 ] - b[ 1 ]) # method returns true if line Segments make # a rectangle def isPossibleRectangle(segments): st = set () # putting all end points in a set to # count total unique points for i in range (N): st.add((segments[i][ 0 ], segments[i][ 1 ])) st.add((segments[i][ 2 ], segments[i][ 3 ])) # If total unique points are not 4, then # they can't make a rectangle if len (st) ! = 4 : return False # dist will store unique 'square of distances' dist = set () # calculating distance between all pair of # end points of line segments for it1 in st: for it2 in st: if it1 ! = it2: dist.add(getDis(it1, it2)) # if total unique distance are more than 3, # then line segment can't make a rectangle if len (dist) > 3 : return False # copying distance into array. Note that set maintains # sorted order. distance = [] for x in dist: distance.append(x) # Sort the distance list, as set in python, does not sort the elements by default. distance.sort() # If line seqments form a square if len (dist) = = 2 : return ( 2 * distance[ 0 ] = = distance[ 1 ]) # distance of sides should satisfy pythagorean # theorem return (distance[ 0 ] + distance[ 1 ] = = distance[ 2 ]) # Driver code to test above methods segments = [ [ 4 , 2 , 7 , 5 ], [ 2 , 4 , 4 , 2 ], [ 2 , 4 , 5 , 7 ], [ 5 , 7 , 7 , 5 ] ] if (isPossibleRectangle(segments) = = True ): print ( "Yes" ) else : print ( "No" ) # The code is contributed by Nidhi goel. |
C#
// C# program to check whether it is possible // to make a rectangle from 4 segments using System; using System.Collections.Generic; class GFG { public static int N = 4; // Utility method to return square of distance // between two points public static int getDis(KeyValuePair< int , int > a, KeyValuePair< int , int > b) { return (a.Key - b.Key)*(a.Key - b.Key) + (a.Value - b.Value)*(a.Value - b.Value); } // method returns true if line Segments make // a rectangle public static bool isPossibleRectangle( int [,] segments) { HashSet<KeyValuePair< int , int >> st = new HashSet<KeyValuePair< int , int >>(); // putting all end points in a set to // count total unique points for ( int j = 0; j < N; j++) { st.Add( new KeyValuePair< int , int >(segments[j,0], segments[j,1])); st.Add( new KeyValuePair< int , int >(segments[j,2], segments[j,3])); } // If total unique points are not 4, then // they can't make a rectangle if (st.Count != 4) return false ; // dist will store unique 'square of distances' HashSet< int > dist = new HashSet< int >(); // calculating distance between all pair of // end points of line segments foreach ( var it1 in st){ foreach ( var it2 in st){ if (it1.Key != it2.Key && it1.Value != it2.Value){ dist.Add(getDis(it1, it2)); } } } // if total unique distance are more than 3, // then line segment can't make a rectangle if (dist.Count > 3) return false ; // copying distance into array. Note that set maintains // sorted order. int [] distance = new int [3]; int i = 0; foreach ( var it in dist){ distance[i] = it; i = i + 1; } // If line seqments form a square if (dist.Count == 2) return (2*distance[0] == distance[1]); // distance of sides should satisfy pythagorean // theorem return (distance[0] + distance[1] == distance[2]); } // Driver code public static void Main() { int [,] segments = { {4, 2, 7, 5}, {2, 4, 4, 2}, {2, 4, 5, 7}, {5, 7, 7, 5} }; if (isPossibleRectangle(segments) == true ){ Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } } } // The code is contributed by Nidhi goel. |
Javascript
// JavaScript program to check whether it is possible // to make a rectangle from 4 segments const N = 4; // Utility method to return square of distance // between two points function getDis(a, b) { return (parseInt(a[0]) - parseInt(b[0]))*(parseInt(a[0]) - parseInt(b[0])) + (parseInt(a[1]) - parseInt(b[1]))*(parseInt(a[1]) - parseInt(b[1])); } // method returns true if line Segments make // a rectangle function isPossibleRectangle(segments) { let st = new Set(); // putting all end points in a set to // count total unique points for (let i = 0; i < N; i++) { let tmp1 = [segments[i][0], segments[i][1]]; let tmp2 = [segments[i][2], segments[i][3]]; st.add(tmp1.join( '' )); st.add(tmp2.join( '' )); } // If total unique points are not 4, then // they can't make a rectangle if (st.size != 4) { return false ; } // dist will store unique 'square of distances' let dist = new Set(); // calculating distance between all pair of // end points of line segments for (let it1 of st) { for (let it2 of st) { if (it1 !== it2) { dist.add(getDis(it1.split(' '), it2.split(' '))); } } } // if total unique distance are more than 3, // then line segment can' t make a rectangle if (dist.size > 3) { return false ; } // copying distance into array. Note that set maintains // sorted order. let distance = new Array(); for (let x of dist) { distance.push(x); } // If line seqments form a square if (dist.size === 2) { return (2*distance[0] == distance[1]); } // distance of sides should satisfy pythagorean // theorem return (distance[0] + distance[1] == distance[2]); } // Driver code to test above methods { let segments = [ [4, 2, 7, 5], [2, 4, 4, 2], [2, 4, 5, 7], [5, 7, 7, 5] ] if (isPossibleRectangle(segments)){ console.log( "Yes" ); } else { console.log( "No" ); } } // The code is contributed by Nidhi Goel |
Output:
Yes
Time Complexity: O(n2logn)
Auxiliary Space: O(n)
This article is contributed by Aarti_Rathi and Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...