Check if binary representation of a number is palindrome
Given an integer ‘x’, write a C function that returns true if binary representation of x is palindrome else return false.
For example a numbers with binary representation as 10..01 is palindrome and number with binary representation as 10..00 is not palindrome.
The idea is similar to checking a string is palindrome or not. We start from leftmost and rightmost bits and compare bits one by one. If we find a mismatch, then return false.
Method#1: We follow the following logic to check binary of number is Palindrome or not:
- Find number of bits in x using sizeof() operator.
- Initialize left and right positions as 1 and n respectively.
- Do following while left ‘l’ is smaller than right ‘r’.
- If bit at position ‘l’ is not same as bit at position ‘r’, then return false.
- Increment ‘l’ and decrement ‘r’, i.e., do l++ and r–-.
- If we reach here, it means we didn’t find a mismatching bit.
- To find the bit at a given position, we can use an idea similar to this post. The expression “x & (1 << (k-1))” gives us non-zero value if bit at k’th position from right is set and gives a zero value if if k’th bit is not set.
Following is the implementation of the above algorithm
C++
// C++ Program to Check if binary representation // of a number is palindrome #include<iostream> using namespace std; // This function returns true if k'th bit in x // is set (or 1). For example if x (0010) is 2 // and k is 2, then it returns true bool isKthBitSet(unsigned int x, unsigned int k) { return (x & (1 << (k - 1))) ? true : false ; } // This function returns true if binary // representation of x is palindrome. // For example (1000...001) is palindrome bool isPalindrome(unsigned int x) { int l = 1; // Initialize left position int r = sizeof (unsigned int ) * 8; // initialize right position // One by one compare bits while (l < r) { if (isKthBitSet(x, l) != isKthBitSet(x, r)) return false ; l++; r--; } return true ; } // Driver Code int main() { unsigned int x = 1 << 15 + 1 << 16; cout << isPalindrome(x) << endl; x = 1 << 31 + 1; cout << isPalindrome(x) << endl; return 0; } |
Java
// Java Program to Check if binary representation // of a number is palindrome class GFG { // This function returns true if k'th bit in x // is set (or 1). For example if x (0010) is 2 // and k is 2, then it returns true static int isKthBitSet( long x, long k) { int rslt = ((x & ( 1 << (k - 1 ))) != 0 ) ? 1 : 0 ; return rslt; } // This function returns true if binary // representation of x is palindrome. // For example (1000...001) is palindrome static int isPalindrome( long x) { long l = 1 ; // Initialize left position long r = (Integer.SIZE/ 8 )* 8 ; // initialize right position // One by one compare bits while (l < r) { if (isKthBitSet(x, l) != isKthBitSet(x, r)) { return 0 ; } l++; r--; } return 1 ; } // Driver Code public static void main (String[] args) { long x = 1 << 15 + 1 << 16 ; System.out.println(isPalindrome(x)); x = ( 1 << 31 ) + 1 ; System.out.println(isPalindrome(x)); } } // This code is contributed by AnkitRai01 |
Python3
# python 3 Program to Check if binary representation # of a number is palindrome import sys # This function returns true if k'th bit in x # is set (or 1). For example if x (0010) is 2 # and k is 2, then it returns true def isKthBitSet(x, k): if ((x & ( 1 << (k - 1 ))) ! = 0 ): return True else : return False # This function returns true if binary # representation of x is palindrome. # For example (1000...001) is palindrome def isPalindrome(x): l = 1 # Initialize left position r = 2 * 8 # initialize right position # One by one compare bits while (l < r): if (isKthBitSet(x, l) ! = isKthBitSet(x, r)): return False l + = 1 r - = 1 return True # Driver Code if __name__ = = '__main__' : x = 1 << 15 + 1 << 16 print ( int (isPalindrome(x))) x = 1 << 31 + 1 print ( int (isPalindrome(x))) # This code is contributed by # Surendra_Gangwar |
C#
// C# Program to Check if binary representation // of a number is palindrome using System; class GFG { // This function returns true if k'th bit in x // is set (or 1). For example if x (0010) is 2 // and k is 2, then it returns true static int isKthBitSet( long x, long k) { int rslt = ((x & (1 << ( int )(k - 1))) != 0) ? 1 : 0; return rslt; } // This function returns true if binary // representation of x is palindrome. // For example (1000...001) is palindrome static int isPalindrome( long x) { long l = 1; // Initialize left position long r = 4 * 8; // initialize right position // One by one compare bits while (l < r) { if (isKthBitSet(x, l) != isKthBitSet(x, r)) { return 0; } l++; r--; } return 1; } // Driver Code public static void Main () { long x = 1 << 15 + 1 << 16 ; Console.WriteLine(isPalindrome(x)); x = (1 << 31) + 1 ; Console.WriteLine(isPalindrome(x)); } } // This code is contributed by AnkitRai01 |
PHP
<?php // PHP Program to Check if binary representation // of a number is palindrome // This function returns true if k'th bit in x // is set (or 1). For example if x (0010) is 2 // and k is 2, then it returns true function isKthBitSet( $x , $k ) { return ( $x & (1 << ( $k - 1))) ? true : false; } // This function returns true if binary // representation of x is palindrome. // For example (1000...001) is palindrome function isPalindrome( $x ) { $l = 1; // Initialize left position $r = sizeof(4) * 8; // initialize right position // One by one compare bits while ( $l < $r ) { if (isKthBitSet( $x , $l ) != isKthBitSet( $x , $r )) return false; $l ++; $r --; } return true; } // Driver Code $x = 1 << 15 + 1 << 16; echo isPalindrome( $x ), "\n" ; $x = 1 << 31 + 1; echo isPalindrome( $x ), "\n" ; // This code is contributed by ajit. ?> |
Javascript
<script> // Javascript program to Check if binary // representation of a number is palindrome // This function returns true if k'th bit in x // is set (or 1). For example if x (0010) is 2 // and k is 2, then it returns true function isKthBitSet(x, k) { let rslt = ((x & (1 << (k - 1))) != 0) ? 1 : 0; return rslt; } // This function returns true if binary // representation of x is palindrome. // For example (1000...001) is palindrome function isPalindrome(x) { // Initialize left position let l = 1; // initialize right position let r = 4 * 8; // One by one compare bits while (l < r) { if (isKthBitSet(x, l) != isKthBitSet(x, r)) { return 0; } l++; r--; } return 1; } // Driver code let x = 1 << 15 + 1 << 16; document.write(isPalindrome(x) + "</br>" ); x = (1 << 31) + 1; document.write(isPalindrome(x)); // This code is contributed by divyesh072019 </script> |
1 1
Time Complexity: O(x)
Auxiliary Space: O(1)
Method#2: Using reverse() function:
- When user inputs an integer, it is passed to method which will evaluate the result.
- Actual logic inside the method focuses on following:
- It first convert the integer to binary form of integer in string format.
- It reverse the string using reverse method.
- It is palindrome if both the string is equal else not.
Below is the implementation of the above approach:
C++
// C++ program to check if binary representation // of a number is palindrome #include <bits/stdc++.h> using namespace std; // This function return the binary form of integer in string format string bin(unsigned n) { string ans; while (n > 0){ ans = (to_string(n&1)) + ans; n >>= 1; } return ans; } // This function returns true if binary // representation of x is palindrome bool checkPalindrome( unsigned int n){ string s1 = bin(n); string s2 = s1; // reversing the string 1 reverse(s2.begin(), s2.end()); return s1 == s2; } // Driver code int main() { unsigned int x = 1 << 15 + 1 << 16; cout << checkPalindrome(x) << endl; x = 10; cout << checkPalindrome(x) << endl; return 0; } |
Java
// Java program to check if binary representation // of a number is palindrome class GFG { // This function return the binary form of integer in string format static String bin( int n) { String ans = "" ; while (n > 0 ){ ans = (Integer.toString(n& 1 )) + ans; n >>= 1 ; } return ans; } // This function returns true if binary // representation of x is palindrome static int checkPalindrome( int n){ String s1 = bin(n); // reversing the string 1 StringBuilder s2 = new StringBuilder(s1); s2 = s2.reverse(); return s1.equals(s2.toString()) ? 1 : 0 ; } public static void main(String[] args) { int x = 9 ; System.out.println(checkPalindrome(x)); x = 10 ; System.out.println(checkPalindrome(x)); } } // This code is contributed by phasing17. |
Python
def bin (n): ans = ""; while n > 0 : ans = ( str (n& 1 )) + ans; n >> = 1 ; return ans; def checkPalindrome(x): s1 = bin (x) s2 = s1[:: - 1 ] return 1 if s1 = = s2 else 0 # Some test cases.... x = 9 ; print (checkPalindrome(x)) # output 1 x = 10 print (checkPalindrome(x)) # output 0 |
C#
// C# program to check if binary representation // of a number is palindrome using System; public class GFG { // This function returns the binary form of integer in // string format static string bin( int n) { string ans = "" ; while (n > 0) { ans = (Convert.ToString(n & 1)) + ans; n >>= 1; } return ans; } // This function returns true if binary // representation of x is palindrome static int checkPalindrome( int n) { string s1 = bin(n); // reversing the string 1 char [] charArray = s1.ToCharArray(); Array.Reverse(charArray); string s2 = new string (charArray); return s1.Equals(s2) ? 1 : 0; } // Driver Code public static void Main( string [] args) { int x = 9; Console.WriteLine(checkPalindrome(x)); x = 10; Console.WriteLine(checkPalindrome(x)); } } // This code is contributed by phasing17. |
Javascript
// JavaScript program to check if binary representation // of a number is palindrome // This function return the binary form of integer in string format function bin(n) { let ans= "" ; while (n > 0){ ans = ((n&1).toString()) + ans; n >>= 1; } return ans; } // This function returns true if binary // representation of x is palindrome function checkPalindrome(x){ let s1 = bin(x); // reversing the string s1 let s2 = s1.split( "" ).reverse().join( "" ); return s1 === s2 ? 1 :0; } // Some test case let x = 1 << 15 + 1 << 16 ; console.log(checkPalindrome(x)); x = 10; console.log(checkPalindrome(x)); |
1 0
Time Complexity: O(log(x))
Auxiliary Space: O(X)
Method 3: Using builtin method bitset<>
- Convert the given number into its binary form.
- Check if it’s palindrome or not.
Below is the implementation of the above approach:
C++
// C++ program to check if binary representation // of a number is palindrome #include <bits/stdc++.h> using namespace std; int isPalindrome( int N) { // Converting N into binary representation string s = bitset<32>(N).to_string(); s = s.substr(s.find( '1' )); // Checking if it is palindrome or not int i = 0, j = s.size() - 1; while (i < j) { if (s[i] != s[j]) return false ; i++; j--; } return true ; } // Driver code int main() { int x = 16; cout << isPalindrome(x) << endl; x = 17; cout << isPalindrome(x) << endl; return 0; } // This code is contributed by hkdass001 |
Java
// Java code for the above approach import java.io.*; class Main { public static boolean isPalindrome( int N) { // Converting N into binary representation String s = Integer.toBinaryString(N); // Checking if it is palindrome or not int i = 0 , j = s.length() - 1 ; while (i < j) { if (s.charAt(i) != s.charAt(j)) { return false ; } i++; j--; } return true ; } public static void main(String[] args) { int x = 16 ; System.out.println(isPalindrome(x)); x = 17 ; System.out.println(isPalindrome(x)); } } // This code is contributed by lokeshpotta20. |
Python3
# Python program to check if binary representation # of a number is palindrome import math def isPalindrome(N): # Converting N into binary representation s = bin (N)[ 2 :] s = s[s.index( '1' ):] # Checking if it is palindrome or not i = 0 ; j = len (s) - 1 ; while (i < j): if (s[i] ! = s[j]): return 0 ; i + = 1 ; j - = 1 ; return 1 ; # Driver code x = 16 ; print (isPalindrome(x)); x = 17 ; print (isPalindrome(x)); |
C#
// C# program to check if binary representation // of a number is palindrome using System; using System.Linq; using System.Collections.Generic; class GFG { static int isPalindrome( int N) { // Converting N into binary representation string s = Convert.ToString(N,2); // Checking if it is palindrome or not int i = 0, j = s.Length - 1; while (i < j) { if (s[i] != s[j]) return 0; i++; j--; } return 1; } // Driver code static public void Main() { int x = 16; Console.WriteLine(isPalindrome(x)); x = 17; Console.WriteLine(isPalindrome(x)); } } |
Javascript
// Javascript program to check if binary representation // of a number is palindrome function isPalindrome(N) { // Converting N into binary representation const s = N.toString(2); // Checking if it is palindrome or not let i = 0, j = s.length - 1; while (i < j) { if (s[i] != s[j]) return 0; i++; j--; } return 1; } // Driver code let x = 16; console.log(isPalindrome(x)); x = 17; console.log(isPalindrome(x)); // This code is contributed by agrawalpoojaa976. |
0 1
Time Complexity: O(k), where k is the number of bits in the given number X
Auxiliary Space: O(k)
This article is contributed by Saurabh Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...