Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Central binomial coefficient

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an integer N, the task is to find the N^{th}    Central binomial coefficient
The first few Central binomial coefficients for N = 0, 1, 2, 3… are 
 

1, 2, 6, 20, 70, 252, 924, 3432…..

Examples: 
 

Input: N = 3 
Output: 20 
Explanation: 
N^{th}    Central Binomial Coefficient = \binom{2N}{N}    \binom{2*3}{3}    \frac{6*5*4}{3*2*1}    = 20
Input: N = 2 
Output:
 

 

Approach: The central binomial coefficient is a binomial coefficient of the form \binom{2N}{N}    . The Binomial Coefficient \binom{2N}{N}    can be computed using this approach for a given value N using Dynamic Programming.
For Example: 
 

Central binomial coefficient of N = 3 is given by: 
\binom{2N}{N}    \binom{2*3}{3}    \frac{6*5*4}{3*2*1}    = 20 
 

Below is the implementation of the above approach:
 

C++




// C++ implementation to find the
// Nth Central Binomial Coefficient
 
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the value of
// Nth Central Binomial Coefficient
int binomialCoeff(int n, int k)
{
    int C[n + 1][k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= min(i, k); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value
            // using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
        }
    }
 
    return C[n][k];
}
 
// Driver Code
int main()
{
    int n = 3;
    int k = n;
    n = 2*n;
    cout << binomialCoeff(n, k);
}


Java




// Java implementation to find the
// Nth Central Binomial Coefficient
class GFG{
     
// Function to find the value of
// Nth Central Binomial Coefficient
static int binomialCoeff(int n, int k)
{
    int[][] C = new int[n + 1][k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for(i = 0; i <= n; i++)
    {
       for(j = 0; j <= Math.min(i, k); j++)
       {
            
          // Base Cases
          if (j == 0 || j == i)
              C[i][j] = 1;
           
          // Calculate value
          // using previously
          // stored values
          else
              C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
       }
    }
    return C[n][k];
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    int k = n;
    n = 2 * n;
     
    System.out.println(binomialCoeff(n, k));
}
}
 
// This code is contributed by Ritik Bansal


Python3




# C# implementation to find the
# Nth Central Binomial Coefficient
 
# Function to find the value of
# Nth Central Binomial Coefficient
def binomialCoeff(n, k):
     
    C = [[0 for j in range(k + 1)]
            for i in range(n + 1)]
     
    i = 0
    j = 0
     
    # Calculate value of Binomial
    # Coefficient in bottom up manner
    for i in range(n + 1):
        for j in range(min(i, k) + 1):
             
            # Base Cases
            if j == 0 or j == i:
                C[i][j] = 1
                 
            # Calculate value
            # using previously
            # stored values
            else:
                C[i][j] = (C[i - 1][j - 1] +
                           C[i - 1][j])
     
    return C[n][k]
     
# Driver code
if __name__=='__main__':
     
    n = 3
    k = n
    n = 2 * n
     
    print(binomialCoeff(n, k))
         
# This code is contributed by rutvik_56


C#




// C# implementation to find the
// Nth Central Binomial Coefficient
using System;
class GFG{
     
// Function to find the value of
// Nth Central Binomial Coefficient
static int binomialCoeff(int n, int k)
{
    int [,]C = new int[n + 1, k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for(i = 0; i <= n; i++)
    {
       for(j = 0; j <= Math.Min(i, k); j++)
       {
            
          // Base Cases
          if (j == 0 || j == i)
              C[i, j] = 1;
               
          // Calculate value
          // using previously
          // stored values
          else
              C[i, j] = C[i - 1, j - 1] +
                        C[i - 1, j];
       }
    }
    return C[n, k];
}
 
// Driver Code
public static void Main()
{
    int n = 3;
    int k = n;
    n = 2 * n;
     
    Console.Write(binomialCoeff(n, k));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// Javascript implementation to find the
// Nth Central Binomial Coefficient
 
// Function to find the value of
// Nth Central Binomial Coefficient
function binomialCoeff(n, k)
{
    var C = Array.from(Array(n+1),()=> Array(k+1));
    var i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= Math.min(i, k); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value
            // using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
        }
    }
 
    return C[n][k];
}
 
// Driver Code
var n = 3;
var k = n;
n = 2*n;
document.write( binomialCoeff(n, k));
 
 
</script>


Output: 

20

 

Time Complexity: O(N * K)
Auxiliary Space: O(N * K)


My Personal Notes arrow_drop_up
Last Updated : 28 Jun, 2021
Like Article
Save Article
Similar Reads
Related Tutorials