Given a number n, find the n-th centered cube number.
The Centered cube number counts the number of points which are formed by a point that is surrounded by concentric cubical layers in 3D with i2 points on the square faces of the i-th layer. Source[WIKI]. Please see this image for more clarity.
The first few Centered cube numbers are:
1, 9, 35, 91, 189, 341, 559, 855, 1241, 172…………………………
Examples :
Input : n = 1
Output : 9
Input : n = 7
Output : 855
Mathematical formula for nth centered cube number is given by:
n-th Centered Cube Number = (2n + 1)(n2 + n + 1)
Below is the basic implementation of the above formula:
C++
#include <bits/stdc++.h>
using namespace std;
int centered_cube( int n)
{
return (2 * n + 1) * ( n * n + n + 1);
}
int main()
{
int n = 3;
cout << n << "th Centered cube number: " ;
cout << centered_cube(n);
cout << endl;
n = 10;
cout << n << "th Centered cube number: " ;
cout << centered_cube(n);
return 0;
}
|
C
#include <stdio.h>
int centered_cube( int n)
{
return (2 * n + 1) * ( n * n + n + 1);
}
int main()
{
int n = 3;
printf ( "%dth Centered cube number: " ,n);
printf ( "%d\n" ,centered_cube(n));
n = 10;
printf ( "%dth Centered cube number: " ,n);
printf ( "%d\n" ,centered_cube(n));
return 0;
}
|
Java
import java.io.*;
class GFG {
static int centered_cube( int n)
{
return ( 2 * n + 1 ) * ( n * n + n + 1 );
}
public static void main (String[] args)
{
int n = 3 ;
System.out.print (n + "th Centered"
+ " cube number: " );
System.out.println (centered_cube(n));
n = 10 ;
System.out.print ( n + "th Centered"
+ " cube number: " );
System.out.println (centered_cube(n));
}
}
|
Python3
def centered_cube(n) :
return ( 2 * n + 1 ) * (
n * n + n + 1 )
if __name__ = = '__main__' :
n = 3
print (n, "th Centered cube " +
"number : " ,
centered_cube(n))
n = 10
print (n, "th Centered cube " +
"number : " ,
centered_cube(n))
|
C#
using System;
class GFG
{
static int centered_cube( int n)
{
return (2 * n + 1) *
(n * n + n + 1);
}
static public void Main ()
{
int n = 3;
Console.Write(n + "th Centered" +
" cube number: " );
Console.WriteLine (centered_cube(n));
n = 10;
Console.Write( n + "th Centered" +
" cube number: " );
Console.WriteLine(centered_cube(n));
}
}
|
PHP
<?php
function centered_cube( $n )
{
return (2 * $n + 1) *
( $n * $n + $n + 1);
}
$n = 3;
echo $n , "th Centered cube number: " ;
echo centered_cube( $n );
echo "\n" ;
$n = 10;
echo $n , "th Centered cube number: " ;
echo centered_cube( $n );
?>
|
Javascript
<script>
function centered_cube(n)
{
return (2 * n + 1) * ( n * n + n + 1);
}
let n = 3;
document.write(n + "th Centered cube number: " );
document.write(centered_cube(n));
document.write( "<br>" );
n = 10;
document.write(n + "th Centered cube number: " );
document.write(centered_cube(n));
</script>
|
Output :
3th Centered cube number: 91
10th Centered cube number: 2331
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...