Calculate height of Binary Tree using Inorder and Level Order Traversal
Given inorder traversal and Level Order traversal of a Binary Tree. The task is to calculate the height of the tree without constructing it.
Example:
Input : Input: Two arrays that represent Inorder and level order traversals of a Binary Tree in[] = {4, 8, 10, 12, 14, 20, 22}; level[] = {20, 8, 22, 4, 12, 10, 14}; Output : 4 The binary tree that can be constructed from the given traversals is:
We can clearly see in the above image that the height of the tree is 4.
The approach to calculating height is similar to the approach discussed in the post Constructing Tree from Inorder and Level Order Traversals.
Let us consider the above example.
in[] = {4, 8, 10, 12, 14, 20, 22};
level[] = {20, 8, 22, 4, 12, 10, 14};
In a Levelorder sequence, the first element is the root of the tree. So we know ’20’ is root for given sequences. By searching ’20’ in Inorder sequence, we can find out all elements on the left side of ‘20’ are in left subtree and elements on right are in the right subtree. So we know below structure now.
20 / \ / \ {4, 8, 10, 12, 14} {22}
Let us call {4, 8, 10, 12, 14} as left subarray in Inorder traversal and {22} as right subarray in Inorder traversal.
In level order traversal, keys of left and right subtrees are not consecutive. So we extract all nodes from level order traversal which are in left subarray of Inorder traversal. To calculate the height of the left subtree of the root, we recur for the extracted elements from level order traversal and left subarray of inorder traversal. In the above example, we recur for the following two arrays.
// Recur for following arrays to // calculate the height of the left subtree In[] = {4, 8, 10, 12, 14} level[] = {8, 4, 12, 10, 14}
Similarly, we recur for the following two arrays and calculate the height of the right subtree.
// Recur for following arrays to calculate // height of the right subtree In[] = {22} level[] = {22}
Below is the implementation of the above approach:
C++
// C++ program to caulate height of Binary Tree // from InOrder and LevelOrder Traversals #include <iostream> using namespace std; /* Function to find index of value in the InOrder Traversal array */ int search( int arr[], int strt, int end, int value) { for ( int i = strt; i <= end; i++) if (arr[i] == value) return i; return -1; } // Function to calculate the height // of the Binary Tree int getHeight( int in[], int level[], int start, int end, int & height, int n) { // Base Case if (start > end) return 0; // Get index of current root in InOrder Traversal int getIndex = search(in, start, end, level[0]); if (getIndex == -1) return 0; // Count elements in Left Subtree int leftCount = getIndex - start; // Count elements in right Subtree int rightCount = end - getIndex; // Declare two arrays for left and // right subtrees int * newLeftLevel = new int [leftCount]; int * newRightLevel = new int [rightCount]; int lheight = 0, rheight = 0; int k = 0; // Extract values from level order traversal array // for current left subtree for ( int i = 0; i < n; i++) { for ( int j = start; j < getIndex; j++) { if (level[i] == in[j]) { newLeftLevel[k] = level[i]; k++; break ; } } } k = 0; // Extract values from level order traversal array // for current right subtree for ( int i = 0; i < n; i++) { for ( int j = getIndex + 1; j <= end; j++) { if (level[i] == in[j]) { newRightLevel[k] = level[i]; k++; break ; } } } // Recursively call to calculate height of left Subtree if (leftCount > 0) lheight = getHeight(in, newLeftLevel, start, getIndex - 1, height, leftCount); // Recursively call to calculate height of right Subtree if (rightCount > 0) rheight = getHeight(in, newRightLevel, getIndex + 1, end, height, rightCount); // Current height height = max(lheight + 1, rheight + 1); // Delete Auxiliary arrays delete [] newRightLevel; delete [] newLeftLevel; // return height return height; } // Driver program to test above functions int main() { int in[] = { 4, 8, 10, 12, 14, 20, 22 }; int level[] = { 20, 8, 22, 4, 12, 10, 14 }; int n = sizeof (in) / sizeof (in[0]); int h = 0; cout << getHeight(in, level, 0, n - 1, h, n); return 0; } |
Java
// Java program to caulate height of Binary Tree // from InOrder and LevelOrder Traversals import java.util.*; class GFG { static int height; /* Function to find index of value in the InOrder Traversal array */ static int search( int arr[], int strt, int end, int value) { for ( int i = strt; i <= end; i++) if (arr[i] == value) return i; return - 1 ; } // Function to calculate the height // of the Binary Tree static int getHeight( int in[], int level[], int start, int end, int n) { // Base Case if (start > end) return 0 ; // Get index of current root in InOrder Traversal int getIndex = search(in, start, end, level[ 0 ]); if (getIndex == - 1 ) return 0 ; // Count elements in Left Subtree int leftCount = getIndex - start; // Count elements in right Subtree int rightCount = end - getIndex; // Declare two arrays for left and // right subtrees int []newLeftLevel = new int [leftCount]; int []newRightLevel = new int [rightCount]; int lheight = 0 , rheight = 0 ; int k = 0 ; // Extract values from level order traversal array // for current left subtree for ( int i = 0 ; i < n; i++) { for ( int j = start; j < getIndex; j++) { if (level[i] == in[j]) { newLeftLevel[k] = level[i]; k++; break ; } } } k = 0 ; // Extract values from level order traversal array // for current right subtree for ( int i = 0 ; i < n; i++) { for ( int j = getIndex + 1 ; j <= end; j++) { if (level[i] == in[j]) { newRightLevel[k] = level[i]; k++; break ; } } } // Recursively call to calculate // height of left Subtree if (leftCount > 0 ) lheight = getHeight(in, newLeftLevel, start, getIndex - 1 , leftCount); // Recursively call to calculate // height of right Subtree if (rightCount > 0 ) rheight = getHeight(in, newRightLevel, getIndex + 1 , end, rightCount); // Current height height = Math.max(lheight + 1 , rheight + 1 ); // Delete Auxiliary arrays newRightLevel= null ; newLeftLevel= null ; // return height return height; } // Driver program to test above functions public static void main(String[] args) { int in[] = { 4 , 8 , 10 , 12 , 14 , 20 , 22 }; int level[] = { 20 , 8 , 22 , 4 , 12 , 10 , 14 }; int n = in.length; height = 0 ; System.out.println(getHeight(in, level, 0 , n - 1 , n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to calculate height of Binary Tree from # InOrder and LevelOrder Traversals ''' Function to find the index of value in the InOrder Traversal list ''' def search(arr, start, end, value): for i in range (start, end + 1 ): if arr[i] = = value: return i return - 1 ''' Function to calculate the height of the Binary Tree ''' def getHeight(inOrder, levelOrder, start, end, height, n): # Base Case if start > end: return 0 # Get Index of current root in InOrder Traversal getIndex = search(inOrder, start, end, levelOrder[ 0 ]) if getIndex = = - 1 : return 0 # Count elements in Left Subtree leftCount = getIndex - start # Count elements in Right Subtree rightCount = end - getIndex # Declare two lists for left and right subtrees newLeftLevel = [ None for _ in range (leftCount)] newRightLevel = [ None for _ in range (rightCount)] lheight, rheight, k = 0 , 0 , 0 # Extract values from level order traversal list # for current left subtree for i in range (n): for j in range (start, getIndex): if levelOrder[i] = = inOrder[j]: newLeftLevel[k] = levelOrder[i] k + = 1 break k = 0 # Extract values from level order traversal list # for current right subtree for i in range (n): for j in range (getIndex + 1 , end + 1 ): if levelOrder[i] = = inOrder[j]: newRightLevel[k] = levelOrder[i] k + = 1 break # Recursively call to calculate height # of left subtree if leftCount > 0 : lheight = getHeight(inOrder, newLeftLevel, start, getIndex - 1 , height, leftCount) # Recursively call to calculate height # of right subtree if rightCount > 0 : rheight = getHeight(inOrder, newRightLevel, getIndex + 1 , end, height, rightCount) # current height height = max (lheight + 1 , rheight + 1 ) # return height return height # Driver Code if __name__ = = '__main__' : inOrder = [ 4 , 8 , 10 , 12 , 14 , 20 , 22 ] levelOrder = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ] n, h = len (inOrder), 0 print (getHeight(inOrder, levelOrder, 0 , n - 1 , h, n)) # This code is contributed by harshraj22 |
C#
// C# program to caulate height of Binary Tree // from InOrder and LevelOrder Traversals using System; using System.Collections.Generic; class GFG { static int height; /* Function to find index of value in the InOrder Traversal array */ static int search( int []arr, int strt, int end, int value) { for ( int i = strt; i <= end; i++) if (arr[i] == value) return i; return -1; } // Function to calculate the height // of the Binary Tree static int getHeight( int []In, int []level, int start, int end, int n) { // Base Case if (start > end) return 0; // Get index of current root in // InOrder Traversal int getIndex = search(In, start, end, level[0]); if (getIndex == -1) return 0; // Count elements in Left Subtree int leftCount = getIndex - start; // Count elements in right Subtree int rightCount = end - getIndex; // Declare two arrays for left and // right subtrees int []newLeftLevel = new int [leftCount]; int []newRightLevel = new int [rightCount]; int lheight = 0, rheight = 0; int k = 0; // Extract values from level order traversal array // for current left subtree for ( int i = 0; i < n; i++) { for ( int j = start; j < getIndex; j++) { if (level[i] == In[j]) { newLeftLevel[k] = level[i]; k++; break ; } } } k = 0; // Extract values from level order traversal array // for current right subtree for ( int i = 0; i < n; i++) { for ( int j = getIndex + 1; j <= end; j++) { if (level[i] == In[j]) { newRightLevel[k] = level[i]; k++; break ; } } } // Recursively call to calculate // height of left Subtree if (leftCount > 0) lheight = getHeight(In, newLeftLevel, start, getIndex - 1, leftCount); // Recursively call to calculate // height of right Subtree if (rightCount > 0) rheight = getHeight(In, newRightLevel, getIndex + 1, end, rightCount); // Current height height = Math.Max(lheight + 1, rheight + 1); // Delete Auxiliary arrays newRightLevel = null ; newLeftLevel = null ; // return height return height; } // Driver Code public static void Main(String[] args) { int []In = {4, 8, 10, 12, 14, 20, 22}; int []level = {20, 8, 22, 4, 12, 10, 14}; int n = In.Length; height = 0; Console.WriteLine(getHeight(In, level, 0, n - 1, n)); } } // This code is contributed by Princi Singh |
Javascript
<script> //Javascript program to caulate height of Binary Tree // from InOrder and LevelOrder Traversals var height = 0; /* Function to find index of value in the InOrder Traversal array */ function search(arr, strt, end, value) { for ( var i = strt; i <= end; i++) if (arr[i] == value) return i; return -1; } // Function to calculate the height // of the Binary Tree function getHeight(In, level, start, end, n) { // Base Case if (start > end) return 0; // Get index of current root in // InOrder Traversal var getIndex = search(In, start, end, level[0]); if (getIndex == -1) return 0; // Count elements in Left Subtree var leftCount = getIndex - start; // Count elements in right Subtree var rightCount = end - getIndex; // Declare two arrays for left and // right subtrees var newLeftLevel = Array(leftCount); var newRightLevel = Array(rightCount); var lheight = 0, rheight = 0; var k = 0; // Extract values from level order traversal array // for current left subtree for ( var i = 0; i < n; i++) { for ( var j = start; j < getIndex; j++) { if (level[i] == In[j]) { newLeftLevel[k] = level[i]; k++; break ; } } } k = 0; // Extract values from level order traversal array // for current right subtree for ( var i = 0; i < n; i++) { for ( var j = getIndex + 1; j <= end; j++) { if (level[i] == In[j]) { newRightLevel[k] = level[i]; k++; break ; } } } // Recursively call to calculate // height of left Subtree if (leftCount > 0) lheight = getHeight(In, newLeftLevel, start, getIndex - 1, leftCount); // Recursively call to calculate // height of right Subtree if (rightCount > 0) rheight = getHeight(In, newRightLevel, getIndex + 1, end, rightCount); // Current height height = Math.max(lheight + 1, rheight + 1); // Delete Auxiliary arrays newRightLevel = null ; newLeftLevel = null ; // return height return height; } // Driver Code var In = [4, 8, 10, 12, 14, 20, 22]; var level = [20, 8, 22, 4, 12, 10, 14]; var n = In.length; height = 0; document.write(getHeight(In, level, 0, n - 1, n)); </script> |
Output:
4
Time Complexity: O(n^2)
In the worst case, the time complexity of the above algorithm will be O(n^2). The search() function takes O(n) time and getHeight() is called n times.
Space Complexity: O(n)
The space complexity of the above algorithm will be O(n). The auxiliary space used by the program is O(n) which is used to store the Level Order Traversal array.
Please Login to comment...