Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Boolean Indexing in Pandas

  • Difficulty Level : Medium
  • Last Updated : 21 Oct, 2021

In boolean indexing, we will select subsets of data based on the actual values of the data in the DataFrame and not on their row/column labels or integer locations. In boolean indexing, we use a boolean vector to filter the data. 
 

Boolean indexing is a type of indexing which uses actual values of the data in the DataFrame. In boolean indexing, we can filter a data in four ways – 
 

  • Accessing a DataFrame with a boolean index
  • Applying a boolean mask to a dataframe
  • Masking data based on column value
  • Masking data based on an index value

Accessing a DataFrame with a boolean index : 
In order to access a dataframe with a boolean index, we have to create a dataframe in which the index of dataframe contains a boolean value that is “True” or “False”. For Example 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
df = pd.DataFrame(dict, index = [True, False, True, False])
  
print(df)


Output: 
 

Now we have created a dataframe with the boolean index after that user can access a dataframe with the help of the boolean index. User can access a dataframe using three functions that is .loc[], .iloc[], .ix[] 
 

Accessing a Dataframe with a boolean index using .loc[]

In order to access a dataframe with a boolean index using .loc[], we simply pass a boolean value (True or False) in a .loc[] function. 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
 
# accessing a dataframe using .loc[] function
print(df.loc[True])


Output: 
 

 

Accessing a Dataframe with a boolean index using .iloc[]

In order to access a dataframe using .iloc[], we have to pass a boolean value (True or False)  but iloc[] function accept only integer as an argument so it will throw an error so we can only access a dataframe when we pass an integer in iloc[] function 
Code #1: 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])
 
# accessing a dataframe using .iloc[] function
print(df.iloc[True])


Output: 
 

TypeError

Code #2: 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])
  
 
# accessing a dataframe using .iloc[] function
print(df.iloc[1])


Output: 
 

 

Accessing a Dataframe with a boolean index using .ix[]

In order to access a dataframe using .ix[], we have to pass boolean value (True or False) and integer value to .ix[] function because as we know that .ix[] function is a hybrid of .loc[] and .iloc[] function. 
Code #1: 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
  
 
# accessing a dataframe using .ix[] function
print(df.ix[True])


Output: 
 

Code #2: 
 

Python




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe with boolean index
df = pd.DataFrame(dict, index = [True, False, True, False])
  
 
# accessing a dataframe using .ix[] function
print(df.ix[1])


Output: 
 

  
Applying a boolean mask to a dataframe : 
In a dataframe we can apply a boolean mask in order to do that we, can use __getitems__ or [] accessor. We can apply a boolean mask by giving a list of True and False of the same length as contain in a dataframe. When we apply a boolean mask it will print only that dataframe in which we pass a boolean value True. To download “nba1.1” CSV file click here.
Code #1: 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
  
 
 
print(df[[True, False, True, False]])


Output: 
 

Code #2: 
 

Python3




# importing pandas package
import pandas as pd
  
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
  
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])
 
  
df[[True, False, True, False, True,
    False, True, False, True, False,
                True, False, True]]


Output: 
 

  
Masking data based on column value : 
In a dataframe we can filter a data based on a column value in order to filter data, we can apply certain conditions on the dataframe using different operators like ==, >, <, <=, >=. When we apply these operators to the dataframe then it produces a Series of True and False. To download the “nba.csv” CSV, click here.
Code #1: 
 

Python




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}
 
# creating a dataframe
df = pd.DataFrame(dict)
  
# using a comparison operator for filtering of data
print(df['degree'] == 'BCA')


Output: 
 

Code #2: 
 

Python




# importing pandas package
import pandas as pd
  
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
  
# using greater than operator for filtering of data
print(data['Age'] > 25)


Output: 
 

  
Masking data based on index value : 
In a dataframe we can filter a data based on a column value in order to filter data, we can create a mask based on the index values using different operators like ==, >, <, etc… . To download “nba1.1” CSV file click here.
Code #1: 
 

Python3




# importing pandas as pd
import pandas as pd
  
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}
  
 
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
 
mask = df.index == 0
 
print(df[mask])


Output: 
 

Code #2: 
 

Python3




# importing pandas package
import pandas as pd
  
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
 
# giving a index to a dataframe
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])
 
# filtering data on index value
mask = df.index > 7
 
df[mask]


Output: 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!