Bitwise AND of N binary strings
Given an array arr[] of binary strings, the task is to calculate the bitwise AND of all of these strings and print the resultant string.
Examples:
Input: arr[] = {“101”, “110110”, “111”}
Output: 000100
Explanation: (000101) & (110110) & (000111) = 000100Input: arr[] = {“110010101”, “111101001”}
Output: 110000001
Approach 1: Similar to Add two bit strings(https://www.geeksforgeeks.org/add-two-bit-strings/)
Given an array of N binary strings. We first compute the AND operation of the first two binary strings and then perform this “Result” with third binary string and so on till the last binary string.
For Example, string arr[] = {“101”, “110110”, “111”};
Step 1: Result = 101 AND 110110;
Step 2: Result = Result(Step1) AND 111;
So on..
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Helper method: given two unequal sized // bit strings, converts them to // same length by adding leading 0s in the // smaller string. Returns the new length int makeEqualLength(string &a, string &b) { int len_a = a.length(); int len_b = b.length(); int num_zeros = abs (len_a-len_b); if (len_a<len_b) { for ( int i = 0 ; i<num_zeros; i++) { a = '0' + a; } // Return len_b which is highest. // No need to proceed further! return len_b; } else { for ( int i = 0 ; i<num_zeros; i++) { b = '0' + b; } } // Return len_a which is greater or // equal to len_b return len_a; } // The main function that performs AND // operation of two-bit sequences // and returns the resultant string string andOperationBitwise(string s1, string s2) { // Make both strings of same length with the // maximum length of s1 & s2. int length = makeEqualLength(s1,s2); // Initialize res as NULL string string res = "" ; // We start from left to right as we have // made both strings of same length. for ( int i = 0 ; i<length; i++) { // Convert s1[i] and s2[i] to int and perform // bitwise AND operation, append to "res" string res = res + ( char )((s1[i] - '0' & s2[i]- '0' )+ '0' ); } return res; } //Driver Code int main() { string arr[] = { "101" , "110110" , "111" }; int n = sizeof (arr)/ sizeof (arr[0]); string result; // Check corner case: If there is just one // binary string, then print it and return. if (n<2) { cout<<arr[n-1]<<endl; return 0; } result = arr[0]; for ( int i = 1; i<n; i++) { result = andOperationBitwise(result, arr[i]); } cout <<result<<endl; } // This code has been contributed by sharathmaidargi |
Java
// Java implementation of the above approach class GFG { // global fields static String a; static String b; // Helper method: given two unequal sized // bit strings, converts them to // same length by adding leading 0s in the // smaller string. Returns the new length static int makeEqualLength() { int len_a = a.length(); int len_b = b.length(); int num_zeros = Math.abs(len_a - len_b); if (len_a < len_b) { for ( int i = 0 ; i < num_zeros; i++) { a = '0' + a; } // Return len_b which is highest. // No need to proceed further! return len_b; } else { for ( int i = 0 ; i < num_zeros; i++) { b = '0' + b; } } // Return len_a which is greater or // equal to len_b return len_a; } // The main function that performs AND // operation of two-bit sequences // and returns the resultant string static String andOperationBitwise(String s1, String s2) { // Make both strings of same length with the // maximum length of s1 & s2. a = s1; b = s2; int length = makeEqualLength(); s1 = a; s2 = b; // Initialize res as NULL string String res = "" ; // We start from left to right as we have // made both strings of same length. for ( int i = 0 ; i < length; i++) { // Convert s1[i] and s2[i] to int and perform // bitwise AND operation, append to "res" string res = res + ( char )((s1.charAt(i) - '0' & s2.charAt(i) - '0' ) + '0' ); } return res; } // Driver code public static void main(String[] args) { String arr[] = { "101" , "110110" , "111" }; int n = arr.length; String result = "" ; // Check corner case: If there is just one // binary string, then print it and return. if (n < 2 ) { System.out.println(arr[n - 1 ]); } result = arr[ 0 ]; for ( int i = 1 ; i < n; i++) { result = andOperationBitwise(result, arr[i]); } System.out.println(result); } } // This code is contributed by phasing17 |
Python3
# Python3 implementation of above approach # this function takes two unequal sized # bit strings, converts them to # same length by adding leading 0s in the # smaller string. Returns the new length def makeEqualLength(a, b): len_a = len (a) len_b = len (b) num_zeros = abs (len_a - len_b) if (len_a < len_b): for i in range (num_zeros): a = '0' + a # Return len_b which is highest. # No need to proceed further! return len_b, a, b else : for i in range (num_zeros): b = '0' + b # Return len_a which is greater or # equal to len_b return len_a, a, b # The main function that performs AND # operation of two-bit sequences # and returns the resultant string def andOperationBitwise(s1, s2): # Make both strings of same length # with the maximum length of s1 & s2. length, s1, s2 = makeEqualLength(s1, s2) # Initialize res as NULL string res = "" # We start from left to right as we have # made both strings of same length. for i in range (length): # Convert s1[i] and s2[i] to int # and perform bitwise AND operation, # append to "res" string res = res + str ( int (s1[i]) & int (s2[i])) return res # Driver Code arr = [ "101" , "110110" , "111" ] n = len (arr) if (n < 2 ): print (arr[n - 1 ]) else : result = arr[ 0 ] for i in range (n): result = andOperationBitwise(result, arr[i]); print (result) # This code is contributed by # ANKITKUMAR34 |
C#
// C# implementation of the above approach using System; class GFG { // global fields static string a; static string b; // Helper method: given two unequal sized // bit strings, converts them to // same length by adding leading 0s in the // smaller string. Returns the new length static int makeEqualLength() { int len_a = a.Length; int len_b = b.Length; int num_zeros = Math.Abs(len_a - len_b); if (len_a < len_b) { for ( int i = 0; i < num_zeros; i++) { a = '0' + a; } // Return len_b which is highest. // No need to proceed further! return len_b; } else { for ( int i = 0; i < num_zeros; i++) { b = '0' + b; } } // Return len_a which is greater or // equal to len_b return len_a; } // The main function that performs AND // operation of two-bit sequences // and returns the resultant string static string andOperationBitwise( string s1, string s2) { // Make both strings of same length with the // maximum length of s1 & s2. a = s1; b = s2; int length = makeEqualLength(); s1 = a; s2 = b; // Initialize res as NULL string string res = "" ; // We start from left to right as we have // made both strings of same length. for ( int i = 0; i < length; i++) { // Convert s1[i] and s2[i] to int and perform // bitwise AND operation, append to "res" string res = res + ( char )((s1[i] - '0' & s2[i] - '0' ) + '0' ); } return res; } // Driver code public static void Main( string [] args) { string [] arr = { "101" , "110110" , "111" }; int n = arr.Length; string result = "" ; // Check corner case: If there is just one // binary string, then print it and return. if (n < 2) { Console.WriteLine(arr[n - 1]); } result = arr[0]; for ( int i = 1; i < n; i++) { result = andOperationBitwise(result, arr[i]); } Console.WriteLine(result); } } // This code is contributed by phasing17 |
Javascript
<script> // Javascript implementation of the above approach // Helper method: given two unequal sized // bit strings, converts them to // same length by adding leading 0s in the // smaller string. Returns the new length let s1, s2; function makeEqualLength() { let len_a = s1.length; let len_b = s2.length; let num_zeros = Math.abs(len_a - len_b); if (len_a < len_b) { for (let i = 0; i < num_zeros; i++) { s1 = '0' + s1; } // Return len_b which is highest. // No need to proceed further! return len_b; } else { for (let i = 0; i < num_zeros; i++) { s2 = '0' + s2; } } // Return len_a which is greater or // equal to len_b return len_a; } // The main function that performs AND // operation of two-bit sequences // and returns the resultant string function andOperationBitwise() { // Make both strings of same length with the // maximum length of s1 & s2. let length = makeEqualLength(); // Initialize res as NULL string let res = "" ; // We start from left to right as we have // made both strings of same length. for (let i = 0 ; i<length; i++) { // Convert s1[i] and s2[i] to int // and perform bitwise AND operation, // append to "res" string res = res + String.fromCharCode((s1[i].charCodeAt() - '0' .charCodeAt() & s2[i].charCodeAt() - '0' .charCodeAt()) + '0' .charCodeAt()); } return res; } // Driver code let arr = [ "101" , "110110" , "111" ]; let n = arr.length; let result; // Check corner case: If there is just one // binary string, then print it and return. if (n < 2) { document.write(arr[n - 1] + "</br>" ); } result = arr[0]; for (let i = 1; i<n; i++) { s1 = result; s2 = arr[i]; result = andOperationBitwise(); } document.write(result); // This code is contributed by vaibhavrabadiya3 </script> |
000100
Time Complexity: O(n *(length)), where n is the number of binary strings, and length is the length of the longest binary string.
Auxiliary Space: O(length), where length is the length of the longest binary string.
Approach 2: Find the size of the smallest and the largest string. We need this to add (largest-smallest) zeroes to our result. For example, if we have 0010 and 11, then AND on these strings will be 0010 (since we can write 11 as 0011). Then perform AND operation on each bit.
We can achieve this by only finding if the current bit in any string is 0 or not. If current bit is 0 in any of the given strings, then AND operation on that bit will be 0. If all bits at the current position are 1, then AND operation will be 1.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to find the bitwise AND of // all the binary strings string strBitwiseAND(string* arr, int n) { string res; // To store the largest and the smallest // string's size, We need this to add '0's // in the resultant string int smallest_size = INT_MAX; int largest_size = INT_MIN; // Reverse each string // Since we need to perform AND operation // on bits from Right to Left for ( int i = 0; i < n; i++) { reverse(arr[i].begin(), arr[i].end()); // Update the respective length values smallest_size = min(smallest_size, ( int )arr[i].size()); largest_size = max(largest_size, ( int )arr[i].size()); } // Traverse bits from 0 to smallest string's size for ( int i = 0; i < smallest_size; i++) { bool all_ones = true ; for ( int j = 0; j < n; j++) { // If at this bit position, there is a 0 // in any of the given strings then AND // operation on current bit position // will be 0 if (arr[j][i] == '0' ) { all_ones = false ; break ; } } // Add resultant bit to result res += (all_ones ? '1' : '0' ); } // Add 0's to the string. for ( int i = 0; i < largest_size - smallest_size; i++) res += '0' ; // Reverse the string // Since we started from LEFT to RIGHT reverse(res.begin(), res.end()); // Return the resultant string return res; } // Driver code int main() { string arr[] = { "101" , "110110" , "111" }; int n = sizeof (arr) / sizeof (arr[0]); cout << strBitwiseAND(arr, n); return 0; } |
Java
// Java implementation of the above approach class GfG { // Function to find the bitwise AND of // all the binary strings static String strBitwiseAND(String[] arr, int n) { String res = "" ; // To store the largest and the smallest // string's size, We need this to add // '0's in the resultant string int smallest_size = Integer.MAX_VALUE; int largest_size = Integer.MIN_VALUE; // Reverse each string // Since we need to perform AND operation // on bits from Right to Left for ( int i = 0 ; i < n; i++) { StringBuilder temp = new StringBuilder(); temp.append(arr[i]); arr[i] = temp.reverse().toString(); // Update the respective length values smallest_size = Math.min(smallest_size, arr[i].length()); largest_size = Math.max(largest_size, arr[i].length()); } // Traverse bits from 0 to smallest string's size for ( int i = 0 ; i < smallest_size; i++) { boolean all_ones = true ; for ( int j = 0 ; j < n; j++) { // If at this bit position, there is a 0 // in any of the given strings then AND // operation on current bit position // will be 0 if (arr[j].charAt(i) == '0' ) { all_ones = false ; break ; } } // Add resultant bit to result res += (all_ones ? '1' : '0' ); } // Add 0's to the string. for ( int i = 0 ; i < largest_size - smallest_size; i++) res += '0' ; // Reverse the string // Since we started from LEFT to RIGHT StringBuilder temp = new StringBuilder(); temp.append(res); res = temp.reverse().toString(); // Return the resultant string return res; } // Driver code public static void main(String []args) { String arr[] = { "101" , "110110" , "111" }; int n = arr.length; System.out.println(strBitwiseAND(arr, n)); } } // This code is contributed by Rituraj Jain |
Python3
# Python3 implementation of the above approach import sys; # Function to find the bitwise AND of # all the binary strings def strBitwiseAND(arr, n) : res = "" # To store the largest and the smallest # string's size, We need this to add '0's # in the resultant string smallest_size = sys.maxsize; largest_size = - (sys.maxsize - 1 ); # Reverse each string # Since we need to perform AND operation # on bits from Right to Left for i in range (n) : arr[i] = arr[i][:: - 1 ] ; # Update the respective length values smallest_size = min (smallest_size, len (arr[i])); largest_size = max (largest_size, len (arr[i])); # Traverse bits from 0 to smallest string's size for i in range (smallest_size) : all_ones = True ; for j in range (n) : # If at this bit position, there is a 0 # in any of the given strings then AND # operation on current bit position # will be 0 if (arr[j][i] = = '0' ) : all_ones = False ; break ; # Add resultant bit to result if all_ones : res + = '1' ; else : res + = '0' ; # Add 0's to the string. for i in range (largest_size - smallest_size) : res + = '0' ; # Reverse the string # Since we started from LEFT to RIGHT res = res[:: - 1 ]; # Return the resultant string return res; # Driver code if __name__ = = "__main__" : arr = [ "101" , "110110" , "111" ]; n = len (arr) ; print (strBitwiseAND(arr, n)); # This code is contributed by Ryuga |
C#
// C# implementation of the above approach: using System; class GfG { // Function to find the bitwise AND of // all the binary strings static String strBitwiseAND(String[] arr, int n) { String res = "" ; // To store the largest and the smallest // string's size, We need this to add // '0's in the resultant string int smallest_size = int .MaxValue; int largest_size = int .MinValue; // Reverse each string // Since we need to perform AND operation // on bits from Right to Left String temp = "" ; for ( int i = 0; i < n; i++) { temp+=arr[i]; arr[i] = reverse(temp); // Update the respective length values smallest_size = Math.Min(smallest_size, arr[i].Length); largest_size = Math.Max(largest_size, arr[i].Length); } // Traverse bits from 0 to smallest string's size for ( int i = 0; i < smallest_size; i++) { bool all_ones = true ; for ( int j = 0; j < n; j++) { // If at this bit position, there is a 0 // in any of the given strings then AND // operation on current bit position // will be 0 if (arr[j][i] == '0' ) { all_ones = false ; break ; } } // Add resultant bit to result res += (all_ones ? '1' : '0' ); } // Add 0's to the string. for ( int i = 0; i < largest_size - smallest_size; i++) res += '0' ; // Reverse the string // Since we started from LEFT to RIGHT String temp1 = "" ; temp1+=res; res = reverse(temp1); // Return the resultant string return res; } static String reverse(String input) { char [] temparray = input.ToCharArray(); int left, right = 0; right = temparray.Length - 1; for (left = 0; left < right; left++, right--) { // Swap values of left and right char temp = temparray[left]; temparray[left] = temparray[right]; temparray[right] = temp; } return String.Join( "" ,temparray); } // Driver code public static void Main(String []args) { String []arr = { "101" , "110110" , "111" }; int n = arr.Length; Console.WriteLine(strBitwiseAND(arr, n)); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the above approach: // Function to find the bitwise AND of // all the binary strings function strBitwiseAND(arr, n) { let res = "" ; // To store the largest and the smallest // string's size, We need this to add // '0's in the resultant string let smallest_size = Number.MAX_VALUE; let largest_size = Number.MIN_VALUE; // Reverse each string // Since we need to perform AND operation // on bits from Right to Left let temp = "" ; for (let i = 0; i < n; i++) { temp+=arr[i]; arr[i] = reverse(temp); // Update the respective length values smallest_size = Math.min(smallest_size, arr[i].length); largest_size = Math.max(largest_size, arr[i].length); } // Traverse bits from 0 to smallest string's size for (let i = 0; i < smallest_size; i++) { let all_ones = true ; for (let j = 0; j < n; j++) { // If at this bit position, there is a 0 // in any of the given strings then AND // operation on current bit position // will be 0 if (arr[j][i] == '0' ) { all_ones = false ; break ; } } // Add resultant bit to result res += (all_ones ? '1' : '0' ); } // Add 0's to the string. for (let i = 0; i < largest_size - smallest_size; i++) res += '0 '; // Reverse the string // Since we started from LEFT to RIGHT let temp1 = ""; temp1+=res; res = reverse(temp1); // Return the resultant string let temparray1 = res; let Temparray = ""; for(let i = 6; i < temparray1.length; i++) { Temparray = Temparray + temparray1[i]; } return Temparray; } function reverse(input) { let temparray = input.split(' '); let left, right = 0; right = temparray.length - 1; for (left = 0; left < right; left++, right--) { // Swap values of left and right let temp = temparray[left]; temparray[left] = temparray[right]; temparray[right] = temp; } return temparray.join( "" ); } let arr = [ "101" , "110110" , "111" ]; let n = arr.length; document.write(strBitwiseAND(arr, n)); </script> |
000100
Time Complexity: O(max(n, length)), where n is the number of binary strings, and length is the length of the longest binary string
Auxiliary Space: O(length), where length is the length of the longest binary string
Please Login to comment...