Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree.
Input:
A Binary Search Tree
Output:
Inorder Traversal: 10 20 30 100 150 200 300
Preorder Traversal: 100 20 10 30 200 150 300
Postorder Traversal: 10 30 20 150 300 200 100Input:
Binary Search Tree
Output:
Inorder Traversal: 8 12 20 22 25 30 40
Preorder Traversal: 22 12 8 20 30 25 40
Postorder Traversal: 8 20 12 25 40 30 22
Inorder Traversal:
Below is the idea to solve the problem:
At first traverse left subtree then visit the root and then traverse the right subtree.
Follow the below steps to implement the idea:
- Traverse left subtree
- Visit the root and print the data.
- Traverse the right subtree
The inorder traversal of the BST gives the values of the nodes in sorted order. To get the decreasing order visit the right, root, and left subtree.
Below is the implementation of the inorder traversal.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Class describing a node of tree class Node { public : int data; Node* left; Node* right; Node( int v) { this ->data = v; this ->left = this ->right = NULL; } }; // Inorder Traversal void printInorder(Node* node) { if (node == NULL) return ; // Traverse left subtree printInorder(node->left); // Visit node cout << node->data << " " ; // Traverse right subtree printInorder(node->right); } // Driver code int main() { // Build the tree Node* root = new Node(100); root->left = new Node(20); root->right = new Node(200); root->left->left = new Node(10); root->left->right = new Node(30); root->right->left = new Node(150); root->right->right = new Node(300); // Function call cout << "Inorder Traversal: " ; printInorder(root); return 0; } |
Java
// Java code to implement the approach import java.io.*; // Class describing a node of tree class Node { int data; Node left; Node right; Node( int v) { this .data = v; this .left = this .right = null ; } } class GFG { // Inorder Traversal public static void printInorder(Node node) { if (node == null ) return ; // Traverse left subtree printInorder(node.left); // Visit node System.out.print(node.data + " " ); // Traverse right subtree printInorder(node.right); } // Driver Code public static void main(String[] args) { // Build the tree Node root = new Node( 100 ); root.left = new Node( 20 ); root.right = new Node( 200 ); root.left.left = new Node( 10 ); root.left.right = new Node( 30 ); root.right.left = new Node( 150 ); root.right.right = new Node( 300 ); // Function call System.out.print( "Inorder Traversal: " ); printInorder(root); } } // This code is contributed by Rohit Pradhan |
Python3
# Python3 code to implement the approach # Class describing a node of tree class Node: def __init__( self , v): self .left = None self .right = None self .data = v # Inorder Traversal def printInorder(root): if root: # Traverse left subtree printInorder(root.left) # Visit node print (root.data,end = " " ) # Traverse right subtree printInorder(root.right) # Driver code if __name__ = = "__main__" : # Build the tree root = Node( 100 ) root.left = Node( 20 ) root.right = Node( 200 ) root.left.left = Node( 10 ) root.left.right = Node( 30 ) root.right.left = Node( 150 ) root.right.right = Node( 300 ) # Function call print ( "Inorder Traversal:" ,end = " " ) printInorder(root) # This code is contributed by ajaymakvana. |
C#
// Include namespace system using System; // Class describing a node of tree public class Node { public int data; public Node left; public Node right; public Node( int v) { this .data = v; this .left = this .right = null ; } } public class GFG { // Inorder Traversal public static void printInorder(Node node) { if (node == null ) { return ; } // Traverse left subtree GFG.printInorder(node.left); // Visit node Console.Write(node.data.ToString() + " " ); // Traverse right subtree GFG.printInorder(node.right); } // Driver Code public static void Main(String[] args) { // Build the tree var root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); // Function call Console.Write( "Inorder Traversal: " ); GFG.printInorder(root); } } |
Javascript
// JavaScript code to implement the approach class Node { constructor(v) { this .left = null ; this .right = null ; this .data = v; } } // Inorder Traversal function printInorder(root) { if (root) { // Traverse left subtree printInorder(root.left); // Visit node console.log(root.data); // Traverse right subtree printInorder(root.right); } } // Driver code if ( true ) { // Build the tree let root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); // Function call console.log( "Inorder Traversal:" ); printInorder(root); } // This code is contributed by akashish__ |
Inorder Traversal: 10 20 30 100 150 200 300
Time complexity: O(N), Where N is the number of nodes.
Auxiliary Space: O(h), Where h is the height of tree
Preorder Traversal:
Below is the idea to solve the problem:
At first visit the root then traverse left subtree and then traverse the right subtree.
Follow the below steps to implement the idea:
- Visit the root and print the data.
- Traverse left subtree
- Traverse the right subtree
Below is the implementation of the preorder traversal.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Class describing a node of tree class Node { public : int data; Node* left; Node* right; Node( int v) { this ->data = v; this ->left = this ->right = NULL; } }; // Preorder Traversal void printPreOrder(Node* node) { if (node == NULL) return ; // Visit Node cout << node->data << " " ; // Traverse left subtree printPreOrder(node->left); // Traverse right subtree printPreOrder(node->right); } // Driver code int main() { // Build the tree Node* root = new Node(100); root->left = new Node(20); root->right = new Node(200); root->left->left = new Node(10); root->left->right = new Node(30); root->right->left = new Node(150); root->right->right = new Node(300); // Function call cout << "Preorder Traversal: " ; printPreOrder(root); return 0; } |
Java
// Java code to implement the approach import java.io.*; // Class describing a node of tree class Node { int data; Node left; Node right; Node( int v) { this .data = v; this .left = this .right = null ; } } class GFG { // Preorder Traversal public static void printPreorder(Node node) { if (node == null ) return ; // Visit node System.out.print(node.data + " " ); // Traverse left subtree printPreorder(node.left); // Traverse right subtree printPreorder(node.right); } public static void main(String[] args) { // Build the tree Node root = new Node( 100 ); root.left = new Node( 20 ); root.right = new Node( 200 ); root.left.left = new Node( 10 ); root.left.right = new Node( 30 ); root.right.left = new Node( 150 ); root.right.right = new Node( 300 ); // Function call System.out.print( "Preorder Traversal: " ); printPreorder(root); } } // This code is contributed by lokeshmvs21. |
Python3
class Node: def __init__( self , v): self .data = v self .left = None self .right = None # Preorder Traversal def printPreOrder(node): if node is None : return # Visit Node print (node.data, end = " " ) # Traverse left subtree printPreOrder(node.left) # Traverse right subtree printPreOrder(node.right) # Driver code if __name__ = = "__main__" : # Build the tree root = Node( 100 ) root.left = Node( 20 ) root.right = Node( 200 ) root.left.left = Node( 10 ) root.left.right = Node( 30 ) root.right.left = Node( 150 ) root.right.right = Node( 300 ) # Function call print ( "Preorder Traversal: " , end = "") printPreOrder(root) |
C#
// Include namespace system using System; // Class describing a node of tree public class Node { public int data; public Node left; public Node right; public Node( int v) { this .data = v; this .left = this .right = null ; } } public class GFG { // Preorder Traversal public static void printPreorder(Node node) { if (node == null ) { return ; } // Visit node Console.Write(node.data.ToString() + " " ); // Traverse left subtree GFG.printPreorder(node.left); // Traverse right subtree GFG.printPreorder(node.right); } public static void Main(String[] args) { // Build the tree var root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); // Function call Console.Write( "Preorder Traversal: " ); GFG.printPreorder(root); } } |
Javascript
class Node { constructor(v) { this .data = v; this .left = this .right = null ; } } function printPreOrder(node) { if (node == null ) return ; console.log(node.data + " " ); printPreOrder(node.left); printPreOrder(node.right); } // Build the tree let root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); console.log( "Preorder Traversal: " ); printPreOrder(root); // This code is contributed by akashish__ |
Preorder Traversal: 100 20 10 30 200 150 300
Time complexity: O(N), Where N is the number of nodes.
Auxiliary Space: O(H), Where H is the height of the tree
Postorder Traversal:
Below is the idea to solve the problem:
At first traverse left subtree then traverse the right subtree and then visit the root.
Follow the below steps to implement the idea:
- Traverse left subtree
- Traverse the right subtree
- Visit the root and print the data.
Below is the implementation of the postorder traversal:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Class to define structure of a node class Node { public : int data; Node* left; Node* right; Node( int v) { this ->data = v; this ->left = this ->right = NULL; } }; // PostOrder Traversal void printPostOrder(Node* node) { if (node == NULL) return ; // Traverse left subtree printPostOrder(node->left); // Traverse right subtree printPostOrder(node->right); // Visit node cout << node->data << " " ; } // Driver code int main() { Node* root = new Node(100); root->left = new Node(20); root->right = new Node(200); root->left->left = new Node(10); root->left->right = new Node(30); root->right->left = new Node(150); root->right->right = new Node(300); // Function call cout << "PostOrder Traversal: " ; printPostOrder(root); cout << "\n" ; return 0; } |
Java
// Java code to implement the approach import java.io.*; // Class describing a node of tree class GFG { static class Node { int data; Node left; Node right; Node( int v) { this .data = v; this .left = this .right = null ; } } // Preorder Traversal public static void printPreorder(Node node) { if (node == null ) return ; // Traverse left subtree printPreorder(node.left); // Traverse right subtree printPreorder(node.right); // Visit node System.out.print(node.data + " " ); } public static void main(String[] args) { // Build the tree Node root = new Node( 100 ); root.left = new Node( 20 ); root.right = new Node( 200 ); root.left.left = new Node( 10 ); root.left.right = new Node( 30 ); root.right.left = new Node( 150 ); root.right.right = new Node( 300 ); // Function call System.out.print( "Preorder Traversal: " ); printPreorder(root); } } |
C#
// Include namespace system using System; // Class describing a node of tree public class Node { public int data; public Node left; public Node right; public Node( int v) { this .data = v; this .left = this .right = null ; } } public class GFG { // Preorder Traversal public static void printPreorder(Node node) { if (node == null ) { return ; } // Traverse left subtree GFG.printPreorder(node.left); // Traverse right subtree GFG.printPreorder(node.right); // Visit node Console.Write(node.data.ToString() + " " ); } public static void Main(String[] args) { // Build the tree var root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); // Function call Console.Write( "Preorder Traversal: " ); GFG.printPreorder(root); } } |
Python3
class Node: def __init__( self , v): self .data = v self .left = None self .right = None # Preorder Traversal def printPostOrder(node): if node is None : return # Traverse left subtree printPostOrder(node.left) # Traverse right subtree printPostOrder(node.right) # Visit Node print (node.data, end = " " ) # Driver code if __name__ = = "__main__" : # Build the tree root = Node( 100 ) root.left = Node( 20 ) root.right = Node( 200 ) root.left.left = Node( 10 ) root.left.right = Node( 30 ) root.right.left = Node( 150 ) root.right.right = Node( 300 ) # Function call print ( "Postorder Traversal: " , end = "") printPostOrder(root) |
Javascript
class Node { constructor(v) { this .data = v; this .left = null ; this .right = null ; } } // Preorder Traversal function printPostOrder(node) { if (node === null ) { return ; } // Traverse left subtree printPostOrder(node.left); // Traverse right subtree printPostOrder(node.right); // Visit Node console.log(node.data, end = " " ); } // Driver code // Build the tree let root = new Node(100); root.left = new Node(20); root.right = new Node(200); root.left.left = new Node(10); root.left.right = new Node(30); root.right.left = new Node(150); root.right.right = new Node(300); // Function call console.log( "Postorder Traversal: " , end = "" ); printPostOrder(root); // This code is contributed by akashish__ |
PostOrder Traversal: 10 30 20 150 300 200 100
Time complexity: O(N), Where N is the number of nodes.
Auxiliary Space: O(H), Where H is the height of the tree
Please Login to comment...