Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Binary representation of a given number

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Write a program to print Binary representation of a given number. 

Recommended Practice

Source: Microsoft Interview Set-3 

Method 1: Iterative 
For any number, we can check whether its ‘i’th bit is 0(OFF) or 1(ON) by bitwise ANDing it with “2^i” (2 raise to i). 

1) Let us take number 'NUM' and we want to check whether it's 0th bit is ON or OFF    
    bit = 2 ^ 0 (0th bit)
    if  NUM & bit >= 1 means 0th bit is ON else 0th bit is OFF

2) Similarly if we want to check whether 5th bit is ON or OFF    
    bit = 2 ^ 5 (5th bit)
    if NUM & bit >= 1 means its 5th bit is ON else 5th bit is OFF.

Let us take unsigned integer (32 bit), which consist of 0-31 bits. To print binary representation of unsigned integer, start from 31th bit, check whether 31th bit is ON or OFF, if it is ON print “1” else print “0”. Now check whether 30th bit is ON or OFF, if it is ON print “1” else print “0”, do this for all bits from 31 to 0, finally we will get binary representation of number.

C++




// C++ Program for the binary
// representation of a given number
#include <bits/stdc++.h>
using namespace std;
 
  void bin(long n)
  {
    long i;
    cout << "0";
    for (i = 1 << 30; i > 0; i = i / 2)
    {
      if((n & i) != 0)
      {
        cout << "1";
      }
      else
      {
        cout << "0";
      }
    }
  }
 
// Driver Code
int main(void)
{
    bin(7);
    cout << endl;
    bin(4);
}
 
// This code is contributed by souravghosh0416


C




#include<stdio.h>
void bin(unsigned n)
{
    unsigned i;
    for (i = 1 << 31; i > 0; i = i / 2)
        (n & i) ? printf("1") : printf("0");
}
 
int main(void)
{
    bin(7);
    printf("\n");
    bin(4);
}


Java




public class GFG
{
  static void bin(long n)
  {
    long i;
    System.out.print("0");
    for (i = 1 << 30; i > 0; i = i / 2)
    {
      if((n & i) != 0)
      {
        System.out.print("1");
      }
      else
      {
        System.out.print("0");
      }
    }
  }
 
  // Driver code
  public static void main(String[] args)
  {
    bin(7);
    System.out.println();
    bin(4);
  }
}
 
// This code is contributed by divyesh072019.


Python3




def bin(n) :
     
    i = 1 << 31
    while(i > 0) :
     
        if((n & i) != 0) :
         
            print("1", end = "")
         
        else :
            print("0", end = "")
             
        i = i // 2
             
bin(7)
print()
bin(4)
 
# This code is contributed by divyeshrabadiya07.


C#




using System;
 
public class GFG{
    static void bin(long n)
    {
        long i;
        Console.Write("0");
        for (i = 1 << 30; i > 0; i = i / 2)
        {
            if((n & i) != 0)
            {
                Console.Write("1");
            }
            else
            {
                Console.Write("0");
            }
        }
    }
    // Driver code
    static public void Main (){
        bin(7);
        Console.WriteLine();
        bin(4);
    }
}
// This code is contributed by avanitrachhadiya2155


Javascript




<script>
// JavaScript Program for the binary
// representation of a given number
    function bin(n)
    {
        let i;
        document.write("0");
        for (i = 1 << 30; i > 0; i = Math.floor(i/2))
        {
            if((n & i) != 0)
            {
                document.write("1");
            }
            else
            {
                document.write("0");
            }
        }
    }
     
    bin(7);
    document.write("<br>");
    bin(4);
     
     
    // This code is contributed by rag2127
     
</script>


Output

00000000000000000000000000000111
00000000000000000000000000000100

Time Complexity: O(1)
Auxiliary Space: O(1)

Method 2: Recursive 
Following is recursive method to print binary representation of ‘NUM’. 

step 1) if NUM > 1
    a) push NUM on stack
    b) recursively call function with 'NUM / 2'
step 2)
    a) pop NUM from stack, divide it by 2 and print it's remainder.

C++




// C++ Program for the binary
// representation of a given number
#include <bits/stdc++.h>
using namespace std;
 
void bin(unsigned n)
{
    /* step 1 */
    if (n > 1)
        bin(n / 2);
 
    /* step 2 */
    cout << n % 2;
}
 
// Driver Code
int main(void)
{
    bin(7);
    cout << endl;
    bin(4);
}
 
// This code is contributed
// by Akanksha Rai


C




// C Program for the binary
// representation of a given number
void bin(unsigned n)
{
    /* step 1 */
    if (n > 1)
        bin(n / 2);
 
    /* step 2 */
    printf("%d", n % 2);
}
 
// Driver Code
int main(void)
{
    bin(7);
    printf("\n");
    bin(4);
}


Java




// Java Program for the binary
// representation of a given number
class GFG {
    static void bin(int n)
    {
        /* step 1 */
        if (n > 1)
            bin(n / 2);
 
        /* step 2 */
        System.out.print(n % 2);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        bin(7);
        System.out.println();
        bin(4);
    }
}
 
// This code is contributed
// by ChitraNayal


Python3




# Python3 Program for the binary
# representation of a given number
 
 
def bin(n):
 
    if n > 1:
        bin(n//2)
 
    print(n % 2, end="")
 
 
# Driver Code
if __name__ == "__main__":
 
    bin(7)
    print()
    bin(4)
 
# This code is contributed by ANKITRAI1


C#




// C# Program for the binary
// representation of a given number
using System;
 
class GFG {
 
    static void bin(int n)
    {
 
        // step 1
        if (n > 1)
            bin(n / 2);
 
        // step 2
        Console.Write(n % 2);
    }
 
    // Driver code
    static public void Main()
    {
        bin(7);
        Console.WriteLine();
        bin(4);
    }
}
 
// This code is contributed ajit


PHP




<?php
// PHP Program for the binary
// representation of a given number
function bin($n)
{
    /* step 1 */
    if ($n > 1)
        bin($n/2);
 
    /* step 2 */
    echo ($n % 2);
}
 
// Driver code
bin(7);
echo ("\n");
bin(4);
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// Javascript program for the binary
// representation of a given number
function bin(n)
{
     
    // Step 1
    if (n > 1)
        bin(parseInt(n / 2, 10));
 
    // Step 2
    document.write(n % 2);
}
 
// Driver code
bin(7);
document.write("</br>");
bin(4);
 
// This code is contributed by divyeshrabadiya07
 
</script>


Output

111
100

Time Complexity: O(log N)
Auxiliary Space: O(log N)

Method 3: Recursive using bitwise operator 
Steps to convert decimal number to its binary representation are given below: 

step 1: Check n > 0
step 2: Right shift the number by 1 bit and recursive function call
step 3: Print the bits of number

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to convert decimal
// to binary number
void bin(unsigned n)
{
    if (n > 1)
        bin(n >> 1);
 
    printf("%d", n & 1);
}
 
// Driver code
int main(void)
{
    bin(131);
    printf("\n");
    bin(3);
    return 0;
}


Java




// Java implementation of the approach
 
class GFG {
 
    // Function to convert decimal
    // to binary number
    static void bin(Integer n)
    {
        if (n > 1)
            bin(n >> 1);
 
        System.out.printf("%d", n & 1);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        bin(131);
        System.out.printf("\n");
        bin(3);
    }
}
/*This code is contributed by PrinciRaj1992*/


Python3




# Python 3 implementation of above approach
 
# Function to convert decimal to
# binary number
 
 
def bin(n):
 
    if (n > 1):
        bin(n >> 1)
    print(n & 1, end="")
 
 
# Driver code
bin(131)
print()
bin(3)
 
# This code is contributed by PrinciRaj1992


C#




// C# implementation of above approach
using System;
 
public class GFG {
 
    // Function to convert decimal
    // to binary number
    static void bin(int n)
    {
        if (n > 1)
            bin(n >> 1);
 
        Console.Write(n & 1);
    }
 
    // Driver code
    public static void Main()
    {
        bin(131);
        Console.WriteLine();
        bin(3);
    }
}
/*This code is contributed by PrinciRaj1992*/


PHP




<?php
// PHP implementation of the approach
 
// Function to convert decimal
// to binary number
function bin($n)
{
    if ($n > 1)
    bin($n>>1);
     
    echo ($n & 1);
}
 
// Driver code
bin(131);
echo "\n";
bin(3);
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
// JavaScript implementation of the approach
 
// Function to convert decimal
// to binary number
function bin(n)
{
    if (n > 1)
        bin(n >> 1);
 
    document.write(n & 1);
}
 
// Driver code
 
    bin(131);
    document.write("<br>");
    bin(3);
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output

10000011
11

Time Complexity: O(log N)
Auxiliary Space: O(log N)

Method 4: Using Bitset of C++

We can use the bitset class of C++ to store the binary representation of any number (positive as well as a negative number). It offers us the flexibility to have the number of bits of our desire, like whether we want to have 32-bit binary representation of just an 8-bit representation of a number.

A complete guide to using bitset can be found on this gfg article LINK.

C++




#include <bits/stdc++.h>
using namespace std;
 
int main()
{
 
    int n = 5, m = -5;
    bitset<8> b(n);
    bitset<8> b1(m);
    cout << "Binary of 5:" << b << endl;
    cout << "Binary of -5:" << b1 << endl;
    return 0;
}


Java




import java.math.BigInteger;
import java.util.Scanner;
 
public class Main {
    public static void main(String[] args)
    {
 
        // Initialize two variables with values 5 and -5
        int n = 5;
        int m = -5;
 
        // Use BigInteger to convert integers to binary
        String b = new BigInteger(Integer.toString(n))
                       .toString(2);
        String b1 = Integer.toBinaryString(m & 0xFF);
 
        // Pad the binary strings with 0s to 8 bits
        b = String.format("%8s", b).replace(' ', '0');
        b1 = String.format("%8s", b1).replace(' ', '0');
 
        // Printing the binary representation of n and m
        System.out.println("Binary of 5: " + b);
        System.out.println("Binary of -5: " + b1);
    }
}
// This code is contributed by Vikram_Shirsat


Python3




# Importing the necessary module
import sys
 
# Initialize two variables with values 5 and -5
n = 5
m = -5
 
# Using the format function to convert integers to binary
b = bin(n & int("1"*8, 2))[2:].zfill(8)
b1 = bin(m & int("1"*8, 2))[2:].zfill(8)
 
# Printing the binary representation of n and m
print("Binary of 5:", b)
print("Binary of -5:", b1)
 
# This code is contributed by Vikram_Shirsat


C#




using System;
using System.Collections;
 
namespace BitArrayExample {
class Program {
    static void Main(string[] args)
    {
 
        // Initialize two variables with values 5 and -5
        int n = 5;
        int m = -5;
 
        // Pad the binary strings with 0s to 8 bits
        BitArray b = new BitArray(new int[] { n });
        BitArray b1 = new BitArray(new int[] { m });
 
        // Printing the binary representation of n and m
        Console.WriteLine("Binary of 5:" + GetBits(b));
        Console.WriteLine("Binary of -5:" + GetBits(b1));
 
        Console.ReadLine();
    }
 
    private static string GetBits(BitArray bits)
    {
        System.Text.StringBuilder sb
            = new System.Text.StringBuilder();
 
        for (int i = 0; i < 8; i++) {
            char c = bits[i] ? '1' : '0';
            sb.Insert(0, c);
        }
 
        return sb.ToString();
    }
}
}
 
// This code is contributed by poojaagarwal2.


Javascript




// Initialize two variables with values 5 and -5
let val1 = 5;
let val2 = -5;
 
// Using the format function to convert integers to binary
let binary1 = (val1 & parseInt("1".repeat(8), 2)).toString(2);
let binary2 = (val2 & parseInt("1".repeat(8), 2)).toString(2);
 
// For generating the output size of length 8 binary digit
let output1 = "0".repeat(8 - binary1.length) + binary1;
let output2 = "0".repeat(8 - binary2.length) + binary2;
 
// Printing the binary representation of val1 and val2
console.log("Binary of 5:" + output1);
console.log("Binary of -5:" + output2);
 
// This code is contributed by subham1406


Output

Binary of 5:00000101
Binary of -5:11111011

Time Complexity: O(1)
Auxiliary Space: O(1)

Method 5: Using Inbuilt library:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
 
using namespace std;
 
void binary(int num){
      //converts the number to binary
      //and removes leading zeroes
     cout << bitset<32>(num).to_string().substr(32 - log2(num));
}
 
// Driver Code
int main()
{
    int x = 10;
    binary(x);
     
}
 
 
// This code is contributed phasing17


Java




// Java program for the above approach
 
import java.util.*;
 
class GFG {
 
static void binary(int num){
     
    System.out.println("the binary number is : "+ Integer.toString(num,2));
     
}
 
// Driver Code
public static void main(String[] args)
{
    int x = 10;
    binary(x);
     
}
}
 
// This code is contributed by sanjoy_62.


Python3




def binary(num):
    return int(bin(num).split('0b')[1])
 
if __name__ == "__main__" :
    x = 10
    binary_x = binary(x)
    print("the binary number is :",binary_x)
 
# This code is contributed by Rishika Gupta.


C#




// C# program for the above approach
using System;
class GFG{
 
static void binary(int num){
     
    Console.WriteLine("the binary number is : "+ Convert.ToString(num,2));
     
}
 
// Driver Code
public static void Main(String[] args)
{
    int x = 10;
    binary(x);
}
}
 
// This code is contributed by code_hunt.


Javascript




// JavaScript code for the above approach
const number = 10;
 
const Binary_Number = number.toString(2);
 
console.log("the binary number is : "+ Binary_Number);
 
// This code is contributed by sam


Output

1010

Time Complexity: O(1)
Auxiliary Space: O(1)

Video tutorial

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
This article is compiled by Narendra Kangralkar


My Personal Notes arrow_drop_up
Last Updated : 17 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials