Binary Heap
A Binary Heap is a complete Binary Tree which is used to store data efficiently to get the max or min element based on its structure.
A Binary Heap is either Min Heap or Max Heap. In a Min Binary Heap, the key at the root must be minimum among all keys present in Binary Heap. The same property must be recursively true for all nodes in Binary Tree. Max Binary Heap is similar to MinHeap.
Examples of Min Heap:
10 10
/ \ / \
20 100 15 30
/ / \ / \
30 40 50 100 40
How is Binary Heap represented?
A Binary Heap is a Complete Binary Tree. A binary heap is typically represented as an array.
- The root element will be at Arr[0].
- The below table shows indices of other nodes for the ith node, i.e., Arr[i]:
Arr[(i-1)/2] | Returns the parent node |
Arr[(2*i)+1] | Returns the left child node |
Arr[(2*i)+2] | Returns the right child node |
The traversal method use to achieve Array representation is Level Order Traversal. Please refer to Array Representation Of Binary Heap for details.
Operations on Heap:
Below are some standard operations on min heap:
- getMin(): It returns the root element of Min Heap. The time Complexity of this operation is O(1). In case of a maxheap it would be getMax().
- extractMin(): Removes the minimum element from MinHeap. The time Complexity of this Operation is O(log N) as this operation needs to maintain the heap property (by calling heapify()) after removing the root.
- decreaseKey(): Decreases the value of the key. The time complexity of this operation is O(log N). If the decreased key value of a node is greater than the parent of the node, then we don’t need to do anything. Otherwise, we need to traverse up to fix the violated heap property.
- insert(): Inserting a new key takes O(log N) time. We add a new key at the end of the tree. If the new key is greater than its parent, then we don’t need to do anything. Otherwise, we need to traverse up to fix the violated heap property.
- delete(): Deleting a key also takes O(log N) time. We replace the key to be deleted with the minimum infinite by calling decreaseKey(). After decreaseKey(), the minus infinite value must reach root, so we call extractMin() to remove the key.
Below is the implementation of basic heap operations.
C++
// A C++ program to demonstrate common Binary Heap Operations #include<iostream> #include<climits> using namespace std; // Prototype of a utility function to swap two integers void swap( int *x, int *y); // A class for Min Heap class MinHeap { int *harr; // pointer to array of elements in heap int capacity; // maximum possible size of min heap int heap_size; // Current number of elements in min heap public : // Constructor MinHeap( int capacity); // to heapify a subtree with the root at given index void MinHeapify( int ); int parent( int i) { return (i-1)/2; } // to get index of left child of node at index i int left( int i) { return (2*i + 1); } // to get index of right child of node at index i int right( int i) { return (2*i + 2); } // to extract the root which is the minimum element int extractMin(); // Decreases key value of key at index i to new_val void decreaseKey( int i, int new_val); // Returns the minimum key (key at root) from min heap int getMin() { return harr[0]; } // Deletes a key stored at index i void deleteKey( int i); // Inserts a new key 'k' void insertKey( int k); }; // Constructor: Builds a heap from a given array a[] of given size MinHeap::MinHeap( int cap) { heap_size = 0; capacity = cap; harr = new int [cap]; } // Inserts a new key 'k' void MinHeap::insertKey( int k) { if (heap_size == capacity) { cout << "\nOverflow: Could not insertKey\n" ; return ; } // First insert the new key at the end heap_size++; int i = heap_size - 1; harr[i] = k; // Fix the min heap property if it is violated while (i != 0 && harr[parent(i)] > harr[i]) { swap(&harr[i], &harr[parent(i)]); i = parent(i); } } // Decreases value of key at index 'i' to new_val. It is assumed that // new_val is smaller than harr[i]. void MinHeap::decreaseKey( int i, int new_val) { harr[i] = new_val; while (i != 0 && harr[parent(i)] > harr[i]) { swap(&harr[i], &harr[parent(i)]); i = parent(i); } } // Method to remove minimum element (or root) from min heap int MinHeap::extractMin() { if (heap_size <= 0) return INT_MAX; if (heap_size == 1) { heap_size--; return harr[0]; } // Store the minimum value, and remove it from heap int root = harr[0]; harr[0] = harr[heap_size-1]; heap_size--; MinHeapify(0); return root; } // This function deletes key at index i. It first reduced value to minus // infinite, then calls extractMin() void MinHeap::deleteKey( int i) { decreaseKey(i, INT_MIN); extractMin(); } // A recursive method to heapify a subtree with the root at given index // This method assumes that the subtrees are already heapified void MinHeap::MinHeapify( int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l] < harr[i]) smallest = l; if (r < heap_size && harr[r] < harr[smallest]) smallest = r; if (smallest != i) { swap(&harr[i], &harr[smallest]); MinHeapify(smallest); } } // A utility function to swap two elements void swap( int *x, int *y) { int temp = *x; *x = *y; *y = temp; } // Driver program to test above functions int main() { MinHeap h(11); h.insertKey(3); h.insertKey(2); h.deleteKey(1); h.insertKey(15); h.insertKey(5); h.insertKey(4); h.insertKey(45); cout << h.extractMin() << " " ; cout << h.getMin() << " " ; h.decreaseKey(2, 1); cout << h.getMin(); return 0; } |
Java
// Java program for the above approach import java.util.*; // A class for Min Heap class MinHeap { // To store array of elements in heap private int [] heapArray; // max size of the heap private int capacity; // Current number of elements in the heap private int current_heap_size; // Constructor public MinHeap( int n) { capacity = n; heapArray = new int [capacity]; current_heap_size = 0 ; } // Swapping using reference private void swap( int [] arr, int a, int b) { int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; } // Get the Parent index for the given index private int parent( int key) { return (key - 1 ) / 2 ; } // Get the Left Child index for the given index private int left( int key) { return 2 * key + 1 ; } // Get the Right Child index for the given index private int right( int key) { return 2 * key + 2 ; } // Inserts a new key public boolean insertKey( int key) { if (current_heap_size == capacity) { // heap is full return false ; } // First insert the new key at the end int i = current_heap_size; heapArray[i] = key; current_heap_size++; // Fix the min heap property if it is violated while (i != 0 && heapArray[i] < heapArray[parent(i)]) { swap(heapArray, i, parent(i)); i = parent(i); } return true ; } // Decreases value of given key to new_val. // It is assumed that new_val is smaller // than heapArray[key]. public void decreaseKey( int key, int new_val) { heapArray[key] = new_val; while (key != 0 && heapArray[key] < heapArray[parent(key)]) { swap(heapArray, key, parent(key)); key = parent(key); } } // Returns the minimum key (key at // root) from min heap public int getMin() { return heapArray[ 0 ]; } // Method to remove minimum element // (or root) from min heap public int extractMin() { if (current_heap_size <= 0 ) { return Integer.MAX_VALUE; } if (current_heap_size == 1 ) { current_heap_size--; return heapArray[ 0 ]; } // Store the minimum value, // and remove it from heap int root = heapArray[ 0 ]; heapArray[ 0 ] = heapArray[current_heap_size - 1 ]; current_heap_size--; MinHeapify( 0 ); return root; } // This function deletes key at the // given index. It first reduced value // to minus infinite, then calls extractMin() public void deleteKey( int key) { decreaseKey(key, Integer.MIN_VALUE); extractMin(); } // A recursive method to heapify a subtree // with the root at given index // This method assumes that the subtrees // are already heapified private void MinHeapify( int key) { int l = left(key); int r = right(key); int smallest = key; if (l < current_heap_size && heapArray[l] < heapArray[smallest]) { smallest = l; } if (r < current_heap_size && heapArray[r] < heapArray[smallest]) { smallest = r; } if (smallest != key) { swap(heapArray, key, smallest); MinHeapify(smallest); } } // Increases value of given key to new_val. // It is assumed that new_val is greater // than heapArray[key]. // Heapify from the given key public void increaseKey( int key, int new_val) { heapArray[key] = new_val; MinHeapify(key); } // Changes value on a key public void changeValueOnAKey( int key, int new_val) { if (heapArray[key] == new_val) { return ; } if (heapArray[key] < new_val) { increaseKey(key, new_val); } else { decreaseKey(key, new_val); } } } // Driver Code class MinHeapTest { public static void main(String[] args) { MinHeap h = new MinHeap( 11 ); h.insertKey( 3 ); h.insertKey( 2 ); h.deleteKey( 1 ); h.insertKey( 15 ); h.insertKey( 5 ); h.insertKey( 4 ); h.insertKey( 45 ); System.out.print(h.extractMin() + " " ); System.out.print(h.getMin() + " " ); h.decreaseKey( 2 , 1 ); System.out.print(h.getMin()); } } // This code is contributed by rishabmalhdijo |
Python
# A Python program to demonstrate common binary heap operations # Import the heap functions from python library from heapq import heappush, heappop, heapify # heappop - pop and return the smallest element from heap # heappush - push the value item onto the heap, maintaining # heap invarient # heapify - transform list into heap, in place, in linear time # A class for Min Heap class MinHeap: # Constructor to initialize a heap def __init__( self ): self .heap = [] def parent( self , i): return (i - 1 ) / 2 # Inserts a new key 'k' def insertKey( self , k): heappush( self .heap, k) # Decrease value of key at index 'i' to new_val # It is assumed that new_val is smaller than heap[i] def decreaseKey( self , i, new_val): self .heap[i] = new_val while (i ! = 0 and self .heap[ self .parent(i)] > self .heap[i]): # Swap heap[i] with heap[parent(i)] self .heap[i] , self .heap[ self .parent(i)] = ( self .heap[ self .parent(i)], self .heap[i]) # Method to remove minimum element from min heap def extractMin( self ): return heappop( self .heap) # This function deletes key at index i. It first reduces # value to minus infinite and then calls extractMin() def deleteKey( self , i): self .decreaseKey(i, float ( "-inf" )) self .extractMin() # Get the minimum element from the heap def getMin( self ): return self .heap[ 0 ] # Driver pgoratm to test above function heapObj = MinHeap() heapObj.insertKey( 3 ) heapObj.insertKey( 2 ) heapObj.deleteKey( 1 ) heapObj.insertKey( 15 ) heapObj.insertKey( 5 ) heapObj.insertKey( 4 ) heapObj.insertKey( 45 ) print heapObj.extractMin(), print heapObj.getMin(), heapObj.decreaseKey( 2 , 1 ) print heapObj.getMin() # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
// C# program to demonstrate common // Binary Heap Operations - Min Heap using System; // A class for Min Heap class MinHeap{ // To store array of elements in heap public int [] heapArray{ get ; set ; } // max size of the heap public int capacity{ get ; set ; } // Current number of elements in the heap public int current_heap_size{ get ; set ; } // Constructor public MinHeap( int n) { capacity = n; heapArray = new int [capacity]; current_heap_size = 0; } // Swapping using reference public static void Swap<T>( ref T lhs, ref T rhs) { T temp = lhs; lhs = rhs; rhs = temp; } // Get the Parent index for the given index public int Parent( int key) { return (key - 1) / 2; } // Get the Left Child index for the given index public int Left( int key) { return 2 * key + 1; } // Get the Right Child index for the given index public int Right( int key) { return 2 * key + 2; } // Inserts a new key public bool insertKey( int key) { if (current_heap_size == capacity) { // heap is full return false ; } // First insert the new key at the end int i = current_heap_size; heapArray[i] = key; current_heap_size++; // Fix the min heap property if it is violated while (i != 0 && heapArray[i] < heapArray[Parent(i)]) { Swap( ref heapArray[i], ref heapArray[Parent(i)]); i = Parent(i); } return true ; } // Decreases value of given key to new_val. // It is assumed that new_val is smaller // than heapArray[key]. public void decreaseKey( int key, int new_val) { heapArray[key] = new_val; while (key != 0 && heapArray[key] < heapArray[Parent(key)]) { Swap( ref heapArray[key], ref heapArray[Parent(key)]); key = Parent(key); } } // Returns the minimum key (key at // root) from min heap public int getMin() { return heapArray[0]; } // Method to remove minimum element // (or root) from min heap public int extractMin() { if (current_heap_size <= 0) { return int .MaxValue; } if (current_heap_size == 1) { current_heap_size--; return heapArray[0]; } // Store the minimum value, // and remove it from heap int root = heapArray[0]; heapArray[0] = heapArray[current_heap_size - 1]; current_heap_size--; MinHeapify(0); return root; } // This function deletes key at the // given index. It first reduced value // to minus infinite, then calls extractMin() public void deleteKey( int key) { decreaseKey(key, int .MinValue); extractMin(); } // A recursive method to heapify a subtree // with the root at given index // This method assumes that the subtrees // are already heapified public void MinHeapify( int key) { int l = Left(key); int r = Right(key); int smallest = key; if (l < current_heap_size && heapArray[l] < heapArray[smallest]) { smallest = l; } if (r < current_heap_size && heapArray[r] < heapArray[smallest]) { smallest = r; } if (smallest != key) { Swap( ref heapArray[key], ref heapArray[smallest]); MinHeapify(smallest); } } // Increases value of given key to new_val. // It is assumed that new_val is greater // than heapArray[key]. // Heapify from the given key public void increaseKey( int key, int new_val) { heapArray[key] = new_val; MinHeapify(key); } // Changes value on a key public void changeValueOnAKey( int key, int new_val) { if (heapArray[key] == new_val) { return ; } if (heapArray[key] < new_val) { increaseKey(key, new_val); } else { decreaseKey(key, new_val); } } } static class MinHeapTest{ // Driver code public static void Main( string [] args) { MinHeap h = new MinHeap(11); h.insertKey(3); h.insertKey(2); h.deleteKey(1); h.insertKey(15); h.insertKey(5); h.insertKey(4); h.insertKey(45); Console.Write(h.extractMin() + " " ); Console.Write(h.getMin() + " " ); h.decreaseKey(2, 1); Console.Write(h.getMin()); } } // This code is contributed by // Dinesh Clinton Albert(dineshclinton) |
Javascript
// A class for Min Heap class MinHeap { // Constructor: Builds a heap from a given array a[] of given size constructor() { this .arr = []; } left(i) { return 2*i + 1; } right(i) { return 2*i + 2; } parent(i){ return Math.floor((i - 1)/2) } getMin() { return this .arr[0] } insert(k) { let arr = this .arr; arr.push(k); // Fix the min heap property if it is violated let i = arr.length - 1; while (i > 0 && arr[ this .parent(i)] > arr[i]) { let p = this .parent(i); [arr[i], arr[p]] = [arr[p], arr[i]]; i = p; } } // Decreases value of key at index 'i' to new_val. // It is assumed that new_val is smaller than arr[i]. decreaseKey(i, new_val) { let arr = this .arr; arr[i] = new_val; while (i !== 0 && arr[ this .parent(i)] > arr[i]) { let p = this .parent(i); [arr[i], arr[p]] = [arr[p], arr[i]]; i = p; } } // Method to remove minimum element (or root) from min heap extractMin() { let arr = this .arr; if (arr.length == 1) { return arr.pop(); } // Store the minimum value, and remove it from heap let res = arr[0]; arr[0] = arr[arr.length-1]; arr.pop(); this .MinHeapify(0); return res; } // This function deletes key at index i. It first reduced value to minus // infinite, then calls extractMin() deleteKey(i) { this .decreaseKey(i, this .arr[0] - 1); this .extractMin(); } // A recursive method to heapify a subtree with the root at given index // This method assumes that the subtrees are already heapified MinHeapify(i) { let arr = this .arr; let n = arr.length; if (n === 1) { return ; } let l = this .left(i); let r = this .right(i); let smallest = i; if (l < n && arr[l] < arr[i]) smallest = l; if (r < n && arr[r] < arr[smallest]) smallest = r; if (smallest !== i) { [arr[i], arr[smallest]] = [arr[smallest], arr[i]] this .MinHeapify(smallest); } } } let h = new MinHeap(); h.insert(3); h.insert(2); h.deleteKey(1); h.insert(15); h.insert(5); h.insert(4); h.insert(45); console.log(h.extractMin() + " " ); console.log(h.getMin() + " " ); h.decreaseKey(2, 1); console.log(h.extractMin()); |
2 4 1
Applications of Heaps:
- Heap Sort: Heap Sort uses Binary Heap to sort an array in O(nLogn) time.
- Priority Queue: Priority queues can be efficiently implemented using Binary Heap because it supports insert(), delete() and extractmax(), decreaseKey() operations in O(log N) time. Binomial Heap and Fibonacci Heap are variations of Binary Heap. These variations perform union also efficiently.
- Graph Algorithms: The priority queues are especially used in Graph Algorithms like Dijkstra’s Shortest Path and Prim’s Minimum Spanning Tree.
- Many problems can be efficiently solved using Heaps. See following for example. a) K’th Largest Element in an array. b) Sort an almost sorted array/ c) Merge K Sorted Arrays.
Related Links:
- Coding Practice on Heap
- All Articles on Heap
- Quiz on Heap
- PriorityQueue : Binary Heap Implementation in Java Library
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...