A backtracking approach to generate n bit Gray Codes
Given a number n, the task is to generate n bit Gray codes (generate bit patterns from 0 to 2^n-1 such that successive patterns differ by one bit)
Examples:
Input : 2 Output : 0 1 3 2 Explanation : 00 - 0 01 - 1 11 - 3 10 - 2 Input : 3 Output : 0 1 3 2 6 7 5 4
We have discussed an approach in Generate n-bit Gray Codes
This article provides a backtracking approach to the same problem. Idea is that for each bit out of n bit we have a choice either we can ignore it or we can invert the bit so this means our gray sequence goes upto 2 ^ n for n bits. So we make two recursive calls for either inverting the bit or leaving the bit as it is.
C++
// CPP program to find the gray sequence of n bits. #include <iostream> #include <vector> using namespace std; /* we have 2 choices for each of the n bits either we can include i.e invert the bit or we can exclude the bit i.e we can leave the number as it is. */ void grayCodeUtil(vector< int >& res, int n, int & num) { // base case when we run out bits to process // we simply include it in gray code sequence. if (n == 0) { res.push_back(num); return ; } // ignore the bit. grayCodeUtil(res, n - 1, num); // invert the bit. num = num ^ (1 << (n - 1)); grayCodeUtil(res, n - 1, num); } // returns the vector containing the gray // code sequence of n bits. vector< int > grayCodes( int n) { vector< int > res; // num is passed by reference to keep // track of current code. int num = 0; grayCodeUtil(res, n, num); return res; } // Driver function. int main() { int n = 3; vector< int > code = grayCodes(n); for ( int i = 0; i < code.size(); i++) cout << code[i] << endl; return 0; } |
Java
// JAVA program to find the gray sequence of n bits. import java.util.*; class GFG { static int num; /* we have 2 choices for each of the n bits either we can include i.e invert the bit or we can exclude the bit i.e we can leave the number as it is. */ static void grayCodeUtil(Vector<Integer> res, int n) { // base case when we run out bits to process // we simply include it in gray code sequence. if (n == 0 ) { res.add(num); return ; } // ignore the bit. grayCodeUtil(res, n - 1 ); // invert the bit. num = num ^ ( 1 << (n - 1 )); grayCodeUtil(res, n - 1 ); } // returns the vector containing the gray // code sequence of n bits. static Vector<Integer> grayCodes( int n) { Vector<Integer> res = new Vector<Integer>(); // num is passed by reference to keep // track of current code. num = 0 ; grayCodeUtil(res, n); return res; } // Driver function. public static void main(String[] args) { int n = 3 ; Vector<Integer> code = grayCodes(n); for ( int i = 0 ; i < code.size(); i++) System.out.print(code.get(i) + "\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to find the # gray sequence of n bits. """ we have 2 choices for each of the n bits either we can include i.e invert the bit or we can exclude the bit i.e we can leave the number as it is. """ def grayCodeUtil(res, n, num): # base case when we run out bits to process # we simply include it in gray code sequence. if (n = = 0 ): res.append(num[ 0 ]) return # ignore the bit. grayCodeUtil(res, n - 1 , num) # invert the bit. num[ 0 ] = num[ 0 ] ^ ( 1 << (n - 1 )) grayCodeUtil(res, n - 1 , num) # returns the vector containing the gray # code sequence of n bits. def grayCodes(n): res = [] # num is passed by reference to keep # track of current code. num = [ 0 ] grayCodeUtil(res, n, num) return res # Driver Code n = 3 code = grayCodes(n) for i in range ( len (code)): print (code[i]) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# program to find the gray sequence of n bits. using System; using System.Collections.Generic; class GFG { static int num; /* we have 2 choices for each of the n bits either we can include i.e invert the bit or we can exclude the bit i.e we can leave the number as it is. */ static void grayCodeUtil(List< int > res, int n) { // base case when we run out bits to process // we simply include it in gray code sequence. if (n == 0) { res.Add(num); return ; } // ignore the bit. grayCodeUtil(res, n - 1); // invert the bit. num = num ^ (1 << (n - 1)); grayCodeUtil(res, n - 1); } // returns the vector containing the gray // code sequence of n bits. static List< int > grayCodes( int n) { List< int > res = new List< int >(); // num is passed by reference to keep // track of current code. num = 0; grayCodeUtil(res, n); return res; } // Driver function. public static void Main(String[] args) { int n = 3; List< int > code = grayCodes(n); for ( int i = 0; i < code.Count; i++) Console.Write(code[i] + "\n" ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find the gray sequence of n bits. /* We have 2 choices for each of the n bits either we can include i.e invert the bit or we can exclude the bit i.e we can leave the number as it is. */ function grayCodeUtil(res, n, num) { // Base case when we run out bits to process // we simply include it in gray code sequence. if (n == 0) { res.push(num[0]); return ; } // Ignore the bit. grayCodeUtil(res, n - 1, num); // Invert the bit. num[0] = num[0] ^ (1 << (n - 1)); grayCodeUtil(res, n - 1, num); } // Returns the vector containing the gray // code sequence of n bits. function grayCodes(n) { let res = []; // num is passed by reference to keep // track of current code. let num = [0]; grayCodeUtil(res, n, num); return res; } // Driver code let n = 3; let code = grayCodes(n); for (let i = 0; i < code.length; i++) document.write(code[i] + "<br>" ); // This code is contributed by gfgking </script> |
Output:
0 1 3 2 6 7 5 4
Time Complexity: O(n)
Auxiliary Space: O(n)
Please Login to comment...