Array range queries to find the number of perfect square elements with updates
Given an array arr[] of N integers, the task is to perform the following two queries:
- query(start, end): Print the number of perfect square numbers in the sub-array from start to end
- update(i, x): Add x to the array element referenced by array index i, that is: arr[i] = x
Note: 0 based indexing is followed in the below example.
Example:
Input: arr = [ 16, 15, 8, 9, 14, 25 ];
Query 1: query(start = 0, end = 4)
Query 2: update(i = 3, x = 11) i.e. arr[3]=11
Query 3: query(start = 0, end = 4)
Output: 2 1
Explanation:
In Query 1, the sub-array [0…4] has 2 perfect square numbers 16 and 9 viz. [ 16, 15, 8, 9, 14 ]
In Query 2, the value at index 3 is updated to 11,
the array arr now is, [ 16, 15, 8, 11, 14, 25 ]
In Query 3, the sub-array [0…4] has 1 perfect square number 16 viz. [ 16, 15, 8, 11, 14 ]
Approach:
To handle both point updates and range queries, a segment tree is optimal for this purpose.
In order to check for perfect square numbers, the idea is to first compute the square root of the number and if the square root is an integer then the current element is a perfect square otherwise not. If the current element is a perfect square, then set it to 1 else to 0.
Building the segment tree:
- The problem is now reduced to the subarray sum using segment tree problem.
- Now, we can build the segment tree where a leaf node is represented as either 0 (if it is not a perfect square number) or 1 (if it is a perfect square number).
- The internal nodes of the segment tree equal to the sum of its child nodes, thus a node represents the total perfect square numbers in the range from L to R with range [L, R] falling under this node and the sub-tree underneath it.
Handling Queries and Point Updates:
- Whenever we receive a query from beginning to end, we can query the segment tree for the sum of nodes in the range from start to end, which in turn represents the number of perfect square numbers in the range from start to end.
- To perform a point update and to update the value at index i to x, we check for the following cases:
Let the old value of arr[i] be y and the new value is x.- Case 1: If x and y both are perfect square numbers
The count of perfect square numbers in the subarray does not change, so we just update the array and do not modify the segment tree - Case 2: If x and y both are not perfect square numbers
The count of perfect square numbers in the subarray does not change, so we just update the array and do not modify the segment tree - Case 3: If y is a perfect square number but x is not
The count of perfect square numbers in the subarray decreases, so we update the array and add -1 to every range. The index i which is to be updated is a part of in the segment tree - Case 4: If y is not a perfect square number but x is a perfect square number
The count of perfect square numbers in the subarray increases so we update the array and add 1 to every range. The index i which is to be updated is a part of in the segment tree
- Case 1: If x and y both are perfect square numbers
Below is the implementation of the above approach:
C++
// C++ program to find number of // perfect square numbers in a // subarray and performing updates #include <bits/stdc++.h> using namespace std; #define MAX 1000 // Function to check if a number is // a perfect square or not bool isPerfectSquare( long long int x) { // Find floating point value of // square root of x. long double sr = sqrt (x); // If square root is an integer return ((sr - floor (sr)) == 0) ? true : false ; } // A utility function to get the middle // index from corner indexes. int getMid( int s, int e) { return s + (e - s) / 2; } // Recursive function to get the number // of perfect square numbers in a given // range /* where st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node i.e. st[index] qs & qe --> Starting and ending indexes of query range */ int queryUtil( int * st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part // of given range, then return // the number of perfect square numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss & se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil( int * st, int ss, int se, int i, int diff, int si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return ; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree void updateValue( int arr[], int * st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { printf ( "Invalid Input" ); return ; } int diff, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are perfect square numbers if (isPerfectSquare(oldValue) && isPerfectSquare(new_val)) return ; // Case 2: Old and new values // both not perfect square numbers if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) return ; // Case 3: Old value was perfect square, // new value is not a perfect square if (isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = -1; } // Case 4: Old value was // non-perfect square, // new_val is perfect square if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = 1; } // Update values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return no. of perfect square numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryUtil() void query( int * st, int n, int qs, int qe) { int perfectSquareInRange = queryUtil( st, 0, n - 1, qs, qe, 0); cout << perfectSquareInRange << "\n" ; } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st int constructSTUtil( int arr[], int ss, int se, int * st, int si) { // If there is one element in array, // check if it is perfect square number // then store 1 in the segment tree // else store 0 and return if (ss == se) { // if arr[ss] is a perfect // square number if (isPerfectSquare(arr[ss])) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one // elements, then recur for // left and right subtrees // and store the sum of the // two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } // Function to construct a segment // tree from given array. This // function allocates memory for // segment tree and calls // constructSTUtil() to fill // the allocated memory int * constructST( int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = ( int )( ceil (log2(n))); // Maximum size of segment tree int max_size = 2 * ( int ) pow (2, x) - 1; int * st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver Code int main() { int arr[] = { 16, 15, 8, 9, 14, 25 }; int n = sizeof (arr) / sizeof (arr[0]); // Build segment tree from given array int * st = constructST(arr, n); // Query 1: Query(start = 0, end = 4) int start = 0; int end = 4; query(st, n, start, end); // Query 2: Update(i = 3, x = 11), // i.e Update a[i] to x int i = 3; int x = 11; updateValue(arr, st, n, i, x); // uncomment to see array after update // for(int i = 0; i < n; i++) // cout << arr[i] << " "; // Query 3: Query(start = 0, end = 4) start = 0; end = 4; query(st, n, start, end); return 0; } |
Java
// Java program to find number of // perfect square numbers in a // subarray and performing updates import java.util.*; class GFG{ static final int MAX = 1000 ; // Function to check if a number is // a perfect square or not static boolean isPerfectSquare( int x) { // Find floating point value of // square root of x. double sr = Math.sqrt(x); // If square root is an integer return ((sr - Math.floor(sr)) == 0 ) ? true : false ; } // A utility function to get // the middle index from // corner indexes. static int getMid( int s, int e) { return s + (e - s) / 2 ; } // Recursive function to get the number // of perfect square numbers in a given // range /* where st -. Pointer to segment tree index -. Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se -. Starting and ending indexes of the segment represented by current node i.e. st[index] qs & qe -. Starting and ending indexes of query range */ static int queryUtil( int []st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part // of given range, then return // the number of perfect square numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0 ; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryUtil(st, ss, mid, qs, qe, 2 * index + 1 ) + queryUtil(st, mid + 1 , se, qs, qe, 2 * index + 2 ); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss & se are same as getSumUtil() i -. index of the element to be updated. This index is in input array. diff -. Value to be added to all nodes which have i in range */ static void updateValueUtil( int []st, int ss, int se, int i, int diff, int si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return ; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1 ); updateValueUtil(st, mid + 1 , se, i, diff, 2 * si + 2 ); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree static void updateValue( int arr[], int [] st, int n, int i, int new_val) { // Check for erroneous // input index if (i < 0 || i > n - 1 ) { System.out.printf( "Invalid Input" ); return ; } int diff = 0 , oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are perfect square numbers if (isPerfectSquare(oldValue) && isPerfectSquare(new_val)) return ; // Case 2: Old and new values // both not perfect square numbers if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) return ; // Case 3: Old value was perfect square, // new value is not a perfect square if (isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = - 1 ; } // Case 4: Old value was // non-perfect square, // new_val is perfect square if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = 1 ; } // Update values of nodes // in segment tree updateValueUtil(st, 0 , n - 1 , i, diff, 0 ); } // Return no. of perfect square numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryUtil() static void query( int [] st, int n, int qs, int qe) { int perfectSquareInRange = queryUtil(st, 0 , n - 1 , qs, qe, 0 ); System.out.print(perfectSquareInRange + "\n" ); } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st static int constructSTUtil( int arr[], int ss, int se, int []st, int si) { // If there is one element // in array, check if it is // perfect square number // then store 1 in the //segment tree else // store 0 and return if (ss == se) { // if arr[ss] is a perfect // square number if (isPerfectSquare(arr[ss])) st[si] = 1 ; else st[si] = 0 ; return st[si]; } // If there are more than one // elements, then recur for // left and right subtrees // and store the sum of the // two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1 ) + constructSTUtil(arr, mid + 1 , se, st, si * 2 + 2 ); return st[si]; } // Function to construct a segment // tree from given array. This // function allocates memory for // segment tree and calls // constructSTUtil() to fill // the allocated memory static int [] constructST( int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = ( int )(Math.ceil(Math.log(n))); // Maximum size of segment tree int max_size = 4 * ( int )Math.pow( 2 , x) + 1 ; int []st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 ); // Return the constructed segment tree return st; } // Driver Code public static void main(String[] args) { int arr[] = { 16 , 15 , 8 , 9 , 14 , 25 }; int n = arr.length; // Build segment tree from // given array int []st = constructST(arr, n); // Query 1: Query // (start = 0, end = 4) int start = 0 ; int end = 4 ; query(st, n, start, end); // Query 2: Update(i = 3, x = 11), // i.e Update a[i] to x int i = 3 ; int x = 11 ; updateValue(arr, st, n, i, x); // uncomment to see array after // update for(int i = 0; i < n; i++) // System.out.print(arr[i]+ " "); // Query 3: Query(start = 0, end = 4) start = 0 ; end = 4 ; query(st, n, start, end); } } // This code is contributed by Rajput-Ji |
Python3
# Python program to find number of # perfect square numbers in a # subarray and performing updates from math import sqrt, floor, ceil, log2 from typing import List MAX = 1000 # Function to check if a number is # a perfect square or not def isPerfectSquare(x: int ) - > bool : # Find floating point value of # square root of x. sr = sqrt(x) # If square root is an integer return True if ((sr - floor(sr)) = = 0 ) else False # A utility function to get the middle # index from corner indexes. def getMid(s: int , e: int ) - > int : return s + (e - s) / / 2 # Recursive function to get the number # of perfect square numbers in a given # range ''' where st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node i.e. st[index] qs & qe --> Starting and ending indexes of query range ''' def queryUtil(st: List [ int ], ss: int , se: int , qs: int , qe: int , index: int ) - > int : # If segment of this node is a part # of given range, then return # the number of perfect square numbers # in the segment if (qs < = ss and qe > = se): return st[index] # If segment of this node # is outside the given range if (se < qs or ss > qe): return 0 # If a part of this segment # overlaps with the given range mid = getMid(ss, se) return queryUtil(st, ss, mid, qs, qe, 2 * index + 1 ) + queryUtil( st, mid + 1 , se, qs, qe, 2 * index + 2 ) # Recursive function to update # the nodes which have the given # index in their range. ''' where st, si, ss & se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range ''' def updateValueUtil(st: List [ int ], ss: int , se: int , i: int , diff: int , si: int ) - > None : # Base Case: # If the input index lies outside # the range of this segment if (i < ss or i > se): return # If the input index is in range # of this node, then update the value # of the node and its children st[si] = st[si] + diff if (se ! = ss): mid = getMid(ss, se) updateValueUtil(st, ss, mid, i, diff, 2 * si + 1 ) updateValueUtil(st, mid + 1 , se, i, diff, 2 * si + 2 ) # Function to update a value in the # input array and segment tree. # It uses updateValueUtil() to update # the value in segment tree def updateValue(arr: List [ int ], st: List [ int ], n: int , i: int , new_val: int ) - > None : # Check for erroneous input index if (i < 0 or i > n - 1 ): print ( "Invalid Input" ) return diff = 0 oldValue = 0 oldValue = arr[i] # Update the value in array arr[i] = new_val # Case 1: Old and new values # both are perfect square numbers if (isPerfectSquare(oldValue) and isPerfectSquare(new_val)): return # Case 2: Old and new values # both not perfect square numbers if ( not isPerfectSquare(oldValue) and not isPerfectSquare(new_val)): return # Case 3: Old value was perfect square, # new value is not a perfect square if (isPerfectSquare(oldValue) and not isPerfectSquare(new_val)): diff = - 1 # Case 4: Old value was # non-perfect square, # new_val is perfect square if ( not isPerfectSquare(oldValue) and not isPerfectSquare(new_val)): diff = 1 # Update values of nodes in segment tree updateValueUtil(st, 0 , n - 1 , i, diff, 0 ) # Return no. of perfect square numbers # in range from index qs (query start) # to qe (query end). # It mainly uses queryUtil() def query(st: List [ int ], n: int , qs: int , qe: int ) - > None : perfectSquareInRange = queryUtil(st, 0 , n - 1 , qs, qe, 0 ) print (perfectSquareInRange) # Recursive function that constructs # Segment Tree for array[ss..se]. # si is index of current node # in segment tree st def constructSTUtil(arr: List [ int ], ss: int , se: int , st: List [ int ], si: int ) - > int : # If there is one element in array, # check if it is perfect square number # then store 1 in the segment tree # else store 0 and return if (ss = = se): # if arr[ss] is a perfect # square number if (isPerfectSquare(arr[ss])): st[si] = 1 else : st[si] = 0 return st[si] # If there are more than one # elements, then recur for # left and right subtrees # and store the sum of the # two values in this node mid = getMid(ss, se) st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1 ) + constructSTUtil( arr, mid + 1 , se, st, si * 2 + 2 ) return st[si] # Function to construct a segment # tree from given array. This # function allocates memory for # segment tree and calls # constructSTUtil() to fill # the allocated memory def constructST(arr: List [ int ], n: int ) - > List [ int ]: # Allocate memory for segment tree # Height of segment tree x = (ceil(log2(n))) # Maximum size of segment tree max_size = 2 * pow ( 2 , x) - 1 st = [ 0 for _ in range (max_size)] # Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 ) # Return the constructed segment tree return st # Driver Code if __name__ = = "__main__" : arr = [ 16 , 15 , 8 , 9 , 14 , 25 ] n = len (arr) # Build segment tree from given array st = constructST(arr, n) # Query 1: Query(start = 0, end = 4) start = 0 end = 4 query(st, n, start, end) # Query 2: Update(i = 3, x = 11), # i.e Update a[i] to x i = 3 x = 11 updateValue(arr, st, n, i, x) # uncomment to see array after update # for(int i = 0; i < n; i++) # cout << arr[i] << " "; # Query 3: Query(start = 0, end = 4) start = 0 end = 4 query(st, n, start, end) # This code is contributed by sanjeev2552 |
C#
// C# program to find number of // perfect square numbers in a // subarray and performing updates using System; class GFG{ static readonly int MAX = 1000; // Function to check if a number // is a perfect square or not static bool isPerfectSquare( int x) { // Find floating point value of // square root of x. double sr = Math.Sqrt(x); // If square root is an integer return ((sr - Math.Floor(sr)) == 0) ? true : false ; } // A utility function to get // the middle index from // corner indexes. static int getMid( int s, int e) { return s + (e - s) / 2; } // Recursive function to get the number // of perfect square numbers in a given // range /* where st -. Pointer to segment tree index -. Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se -. Starting and ending indexes of the segment represented by current node i.e. st[index] qs & qe -. Starting and ending indexes of query range */ static int queryUtil( int []st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part // of given range, then return the // number of perfect square numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss & se are same as getSumUtil() i -. index of the element to be updated. This index is in input array. diff -. Value to be added to all nodes which have i in range */ static void updateValueUtil( int []st, int ss, int se, int i, int diff, int si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return ; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree static void updateValue( int []arr, int [] st, int n, int i, int new_val) { // Check for erroneous // input index if (i < 0 || i > n - 1) { Console.Write( "Invalid Input" ); return ; } int diff = 0, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are perfect square numbers if (isPerfectSquare(oldValue) && isPerfectSquare(new_val)) return ; // Case 2: Old and new values // both not perfect square numbers if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) return ; // Case 3: Old value was perfect // square, new value is not a // perfect square if (isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = -1; } // Case 4: Old value was // non-perfect square, // new_val is perfect square if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = 1; } // Update values of nodes // in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return no. of perfect square numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryUtil() static void query( int [] st, int n, int qs, int qe) { int perfectSquareInRange = queryUtil(st, 0, n - 1, qs, qe, 0); Console.Write(perfectSquareInRange + "\n" ); } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st static int constructSTUtil( int []arr, int ss, int se, int []st, int si) { // If there is one element // in array, check if it is // perfect square number // then store 1 in the //segment tree else // store 0 and return if (ss == se) { // if arr[ss] is a perfect // square number if (isPerfectSquare(arr[ss])) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one // elements, then recur for // left and right subtrees // and store the sum of the // two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } // Function to construct a segment // tree from given array. This // function allocates memory for // segment tree and calls // constructSTUtil() to fill // the allocated memory static int [] constructST( int []arr, int n) { // Allocate memory for segment tree // Height of segment tree int x = ( int )(Math.Ceiling(Math.Log(n))); // Maximum size of segment tree int max_size = 4 * ( int )Math.Pow(2, x) + 1; int []st = new int [max_size]; // Fill the allocated // memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed // segment tree return st; } // Driver Code public static void Main(String[] args) { int []arr = {16, 15, 8, 9, 14, 25}; int n = arr.Length; // Build segment tree // from given array int []st = constructST(arr, n); // Query 1: Query // (start = 0, end = 4) int start = 0; int end = 4; query(st, n, start, end); // Query 2: Update(i = 3, // x = 11), i.e Update a[i] to x int i = 3; int x = 11; updateValue(arr, st, n, i, x); // uncomment to see array after // update for(int i = 0; i < n; i++) // Console.Write(arr[i]+ " "); // Query 3: Query(start = 0, // end = 4) start = 0; end = 4; query(st, n, start, end); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to find number of // perfect square numbers in a // subarray and performing updates let MAX = 1000; // Function to check if a number is // a perfect square or not function isPerfectSquare(x) { // Find floating point value of // square root of x. let sr = Math.sqrt(x); // If square root is an integer return ((sr - Math.floor(sr)) == 0) ? true : false ; } // A utility function to get // the middle index from // corner indexes. function getMid(s, e) { return Math.floor(s + (e - s) / 2); } // Recursive function to get the number // of perfect square numbers in a given // range /* where st -. Pointer to segment tree index -. Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se -. Starting and ending indexes of the segment represented by current node i.e. st[index] qs & qe -. Starting and ending indexes of query range */ function queryUtil(st, ss, se, qs, qe, index) { // If segment of this node is a part // of given range, then return // the number of perfect square numbers // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node // is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range let mid = getMid(ss, se); return queryUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } // Recursive function to update // the nodes which have the given // index in their range. /* where st, si, ss & se are same as getSumUtil() i -. index of the element to be updated. This index is in input array. diff -. Value to be added to all nodes which have i in range */ function updateValueUtil(st, ss, se, i, diff, si) { // Base Case: // If the input index lies outside // the range of this segment if (i < ss || i > se) return ; // If the input index is in range // of this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { let mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // Function to update a value in the // input array and segment tree. // It uses updateValueUtil() to update // the value in segment tree function updateValue(arr, st, n, i, new_val) { // Check for erroneous // input index if (i < 0 || i > n - 1) { document.write( "Invalid Input" ); return ; } let diff = 0, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values // both are perfect square numbers if (isPerfectSquare(oldValue) && isPerfectSquare(new_val)) return ; // Case 2: Old and new values // both not perfect square numbers if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) return ; // Case 3: Old value was perfect square, // new value is not a perfect square if (isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = -1; } // Case 4: Old value was // non-perfect square, // new_val is perfect square if (!isPerfectSquare(oldValue) && !isPerfectSquare(new_val)) { diff = 1; } // Update values of nodes // in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return no. of perfect square numbers // in range from index qs (query start) // to qe (query end). // It mainly uses queryUtil() function query(st, n, qs, qe) { let perfectSquareInRange = queryUtil(st, 0, n - 1, qs, qe, 0); document.write(perfectSquareInRange + "<br>" ); } // Recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node // in segment tree st function constructSTUtil(arr, ss, se, st, si) { // If there is one element // in array, check if it is // perfect square number // then store 1 in the //segment tree else // store 0 and return if (ss == se) { // if arr[ss] is a perfect // square number if (isPerfectSquare(arr[ss])) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one // elements, then recur for // left and right subtrees // and store the sum of the // two values in this node let mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } // Function to construct a segment // tree from given array. This // function allocates memory for // segment tree and calls // constructSTUtil() to fill // the allocated memory function constructST(arr, n) { // Allocate memory for segment tree // Height of segment tree let x = (Math.ceil(Math.log(n))); // Maximum size of segment tree let max_size = 2 * Math.pow(2, x) - 1; let st = new Array(max_size).fill(0); // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver Code let arr = [16, 15, 8, 9, 14, 25]; let n = arr.length; // Build segment tree from // given array let st = constructST(arr, n); // Query 1: Query // (start = 0, end = 4) let start = 0; let end = 4; query(st, n, start, end); // Query 2: Update(i = 3, x = 11), // i.e Update a[i] to x let i = 3; let x = 11; updateValue(arr, st, n, i, x); // uncomment to see array after // update for(let i = 0; i < n; i++) // System.out.print(arr[i]+ " "); // Query 3: Query(start = 0, end = 4) start = 0; end = 4; query(st, n, start, end); // This code is contributed by Saurabh Jaiswal </script> |
2 1
Time Complexity: The time complexity of each query and update is O(log N) and that of building the segment tree is O(N)
Please Login to comment...