Array Range Queries to find the Maximum Armstrong number with updates
Given an array arr[] of N integers, the task is to perform the following two queries:
- maximum(start, end): Print the maximum Armstrong number of elements in the sub-array from start to end
- update(i, x): Add x to the array element referenced by array index i, that is: arr[i] = x
If there is no Armstrong number in the sub-array, print -1.
Example:
Input: arr = [192, 113, 535, 7, 19, 111]
Query 1: maximum(start=1, end=3)
Query 2: update(i=1, x=153) i.e. arr[1]=153
Output:
Maximum Armstrong number in given range = 7
Updated Maximum Armstrong number in given range = 153
Explanation:
In the Maximum Query, the sub-array [1…3] has 1 Armstrong number 7 viz. [113, 535, 7]
Hence, 7 is the maximum Armstrong number in the given range.
In the Update Query, the value at index 1 is updated to 153, the array arr now is, [192, 153, 535, 7, 19, 111]
In Updated Maximum Query, the sub-array [1…3] has 2 Armstrong numbers 153 and 7 viz. [153, 535, 7]
Hence, 153 is the maximum Armstrong number in the given range.
Simple Solution:
A simple solution is to run a loop from l to r and calculate the maximum Armstrong number of elements in a given range. To update a value, simply do arr[i] = x. The first operation takes O(N) time and the second operation takes O(1) time.
Efficient Approach:
- An efficient approach will be to build a Segment Tree where each node stores two values(value and max_set_bits), and do a range query on it to find the maximum Armstrong number.
- If we have a deep look into it, the maximum Armstrong number for any two range combining will either be the maximum Armstrong number from the left side or the maximum Armstrong number from the right side, whichever is maximum will be taken into account.
- Representation of Segment trees:
- Leaf Nodes are the elements of the given array.
- Each internal node represents the maximum Armstrong number of all of its child or -1 is no Armstrong number exists in the range.
- An array representation of a tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at (i-1)/2.
- Construction of Segment Tree from the given array:
- We start with a segment arr[0 . . . n-1], and every time we divide the current segment into two halves(if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the maximum Armstrong number value or -1 in a segment tree node. All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a full Binary Tree because we always divide segments into two halves at every level. Since the constructed tree is always a full binary tree with n leaves, there will be n-1 internal nodes. So total nodes will be 2*n – 1. The height of the segment tree will be log2n. Since the tree is represented using array and relation between parent and child indexes must be maintained, the size of memory allocated for the segment tree will be 2*( 2ceil(log2n) ) – 1.
- A positive integer of n digits is called an Armstrong number of order n (order is a number of digits) if
abcd… = pow(a, n) + pow(b, n) + pow(c, n) + pow(d, n) + ….
- In order to check for Armstrong numbers, the idea is to first count number digits (or find order). Let the number of digits be n. For every digit r in input number x, compute rn. If the sum of all such values is equal to n, then return true else false.
- We then do a range query on the segment tree to find out the maximum Armstrong number for the given range and output the corresponding value.
Below is the implementation of the above approach:
C++
// C++ code to implement above approach #include <bits/stdc++.h> using namespace std; // A utility function to get the // middle index of given range. int getMid( int s, int e) { return s + (e - s) / 2; } // Function that return true // if num is armstrong // else return false bool isArmstrong( int x) { int n = to_string(x).size(); int sum1 = 0; int temp = x; while (temp > 0) { int digit = temp % 10; sum1 += pow (digit, n); temp /= 10; } if (sum1 == x) return true ; return false ; } /* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st -> Pointer to segment tree node -> Index of current node in the segment tree . ss & se -> Starting and ending indexes of the segment represented by current node, i.e., st[node] l & r -> Starting and ending indexes of range query */ int MaxUtil( int * st, int ss, int se, int l, int r, int node) { // If segment of this node is // completely part of given range, // then return the max of segment. if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return -1; // If segment of this node is // partially the part of given // range int mid = getMid(ss, se); return max( MaxUtil(st, ss, mid, l, r, 2 * node + 1), MaxUtil(st, mid + 1, se, l, r, 2 * node + 2)); } /* A recursive function to update the nodes which have the given the index in their range. The following are parameters st, ss and se are same as defined above index -> index of the element to be updated.*/ void updateValue( int arr[], int * st, int ss, int se, int index, int value, int node) { if (index < ss || index > se) { cout << "Invalid Input" << endl; return ; } if (ss == se) { // update value in array // and in segment tree arr[index] = value; if (isArmstrong(value)) st[node] = value; else st[node] = -1; } else { int mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node + 1); else updateValue(arr, st, mid + 1, se, index, value, 2 * node + 2); st[node] = max(st[2 * node + 1], st[2 * node + 2]); } return ; } // Return max of elements in // range from index // l (query start) to r (query end). int getMax( int * st, int n, int l, int r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { printf ( "Invalid Input" ); return -1; } return MaxUtil(st, 0, n - 1, l, r, 0); } // A recursive function that // constructs Segment Tree for // array[ss..se]. si is index of // current node in segment tree st int constructSTUtil( int arr[], int ss, int se, int * st, int si) { // If there is one // element in array, store // it in current node of // segment tree and return if (ss == se) { if (isArmstrong(arr[ss])) st[si] = arr[ss]; else st[si] = -1; return st[si]; } // If there are more than // one elements, then // recur for left and right // subtrees and store the // max of values in this node int mid = getMid(ss, se); st[si] = max(constructSTUtil( arr, ss, mid, st, si * 2 + 1), constructSTUtil( arr, mid + 1, se, st, si * 2 + 2)); return st[si]; } /* Function to construct a segment tree from given array. This function allocates memory for segment tree.*/ int * constructST( int arr[], int n) { // Height of segment tree int x = ( int )( ceil (log2(n))); // Maximum size of segment tree int max_size = 2 * ( int ) pow (2, x) - 1; // Allocate memory int * st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed // segment tree return st; } // Driver code int main() { int arr[] = { 192, 113, 535, 7, 19, 111 }; int n = sizeof (arr) / sizeof (arr[0]); // Build segment tree from // given array int * st = constructST(arr, n); // Print max of values in array // from index 1 to 3 cout << "Maximum armstrong " << "number in given range = " << getMax(st, n, 1, 3) << endl; // Update: set arr[1] = 153 and update // corresponding segment tree nodes. updateValue(arr, st, 0, n - 1, 1, 153, 0); // Find max after the value is updated cout << "Updated Maximum armstrong " << "number in given range = " << getMax(st, n, 1, 3) << endl; return 0; } |
Java
// Java code to implement // the above approach import java.util.*; class GFG{ // A utility function to get the // middle index of given range. static int getMid( int s, int e) { return s + (e - s) / 2 ; } // Function that return true // if num is armstrong // else return false static boolean isArmstrong( int x) { int n = String.valueOf(x).length(); int sum1 = 0 ; int temp = x; while (temp > 0 ) { int digit = temp % 10 ; sum1 += Math.pow(digit, n); temp /= 10 ; } if (sum1 == x) return true ; return false ; } /* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st.Pointer to segment tree node.Index of current node in the segment tree . ss & se.Starting and ending indexes of the segment represented by current node, i.e., st[node] l & r.Starting and ending indexes of range query */ static int MaxUtil( int []st, int ss, int se, int l, int r, int node) { // If segment of this node is // completely part of given range, // then return the max of segment. if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return - 1 ; // If segment of this node is // partially the part of given // range int mid = getMid(ss, se); return Math.max(MaxUtil(st, ss, mid, l, r, 2 * node ), MaxUtil(st, mid + 1 , se, l, r, 2 * node + 1 )); } /* A recursive function to update the nodes which have the given the index in their range. The following are parameters st, ss and se are same as defined above index.index of the element to be updated.*/ static void updateValue( int arr[], int []st, int ss, int se, int index, int value, int node) { if (index < ss || index > se) { System.out.print( "Invalid Input" + "\n" ); return ; } if (ss == se) { // update value in array // and in segment tree arr[index] = value; if (isArmstrong(value)) st[node] = value; else st[node] = - 1 ; } else { int mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node); else updateValue(arr, st, mid + 1 , se, index, value, 2 * node + 1 ); st[node] = Math.max(st[ 2 * node + 1 ], st[ 2 * node + 2 ]); } return ; } // Return max of elements in // range from index // l (query start) to r (query end). static int getMax( int []st, int n, int l, int r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { System.out.printf( "Invalid Input" ); return - 1 ; } return MaxUtil(st, 0 , n - 1 , l, r, 0 ); } // A recursive function that // constructs Segment Tree for // array[ss..se]. si is index of // current node in segment tree st static int constructSTUtil( int arr[], int ss, int se, int []st, int si) { // If there is one // element in array, store // it in current node of // segment tree and return if (ss == se) { if (isArmstrong(arr[ss])) st[si] = arr[ss]; else st[si] = - 1 ; return st[si]; } // If there are more than // one elements, then // recur for left and right // subtrees and store the // max of values in this node int mid = getMid(ss, se); st[si] = Math.max(constructSTUtil(arr, ss, mid, st, si * 2 ), constructSTUtil(arr, mid + 1 , se, st, si * 2 + 1 )); return st[si]; } /* Function to construct a segment tree from given array. This function allocates memory for segment tree.*/ static int [] constructST( int arr[], int n) { // Height of segment tree int x = ( int )(Math.ceil(Math.log(n))); // Maximum size of segment tree int max_size = 2 * ( int )Math.pow( 2 , x) - 1 ; // Allocate memory int []st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 ); // Return the constructed // segment tree return st; } // Driver code public static void main(String[] args) { int arr[] = { 192 , 113 , 535 , 7 , 19 , 111 }; int n = arr.length; // Build segment tree from // given array int [] st = constructST(arr, n); // Print max of values in array // from index 1 to 3 System.out.print( "Maximum armstrong " + "number in given range = " + getMax(st, n, 1 , 3 ) + "\n" ); // Update: set arr[1] = 153 and update // corresponding segment tree nodes. updateValue(arr, st, 0 , n - 1 , 1 , 153 , 0 ); // Find max after the value is updated System.out.print( "Updated Maximum armstrong " + "number in given range = " + getMax(st, n, 1 , 3 ) + "\n" ); } } // This code is contributed by gauravrajput1 |
Python3
# Python code to implement above approach import math # A utility function to get the # middle index of given range. def getMid(s: int , e: int ) - > int : return s + (e - s) / / 2 # Function that return true # if num is armstrong # else return false def isArmstrong(x: int ) - > bool : n = len ( str (x)) sum1 = 0 temp = x while (temp > 0 ): digit = temp % 10 sum1 + = pow (digit, n) temp / / = 10 if (sum1 = = x): return True return False ''' A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st -> Pointer to segment tree node -> Index of current node in the segment tree . ss & se -> Starting and ending indexes of the segment represented by current node, i.e., st[node] l & r -> Starting and ending indexes of range query ''' def MaxUtil(st, ss, se, l, r, node): # If segment of this node is # completely part of given range, # then return the max of segment. if (l < = ss and r > = se): return st[node] # If segment of this node does not # belong to given range if (se < l or ss > r): return - 1 # If segment of this node is # partially the part of given # range mid = getMid(ss, se) return max (MaxUtil(st, ss, mid, l, r, 2 * node + 1 ), MaxUtil(st, mid + 1 , se, l, r, 2 * node + 2 )) ''' A recursive function to update the nodes which have the given the index in their range. The following are parameters st, ss and se are same as defined above index -> index of the element to be updated.''' def updateValue(arr, st, ss, se, index, value, node): if (index < ss or index > se): print ( "Invalid Input" ) return if (ss = = se): # update value in array # and in segment tree arr[index] = value if (isArmstrong(value)): st[node] = value else : st[node] = - 1 else : mid = getMid(ss, se) if (index > = ss and index < = mid): updateValue(arr, st, ss, mid, index, value, 2 * node + 1 ) else : updateValue(arr, st, mid + 1 , se, index, value, 2 * node + 2 ) st[node] = max (st[ 2 * node + 1 ], st[ 2 * node + 2 ]) return # Return max of elements in # range from index # l (query start) to r (query end). def getMax(st, n, l, r): # Check for erroneous input values if (l < 0 or r > n - 1 or l > r): print ( "Invalid Input" ) return - 1 return MaxUtil(st, 0 , n - 1 , l, r, 0 ) # A recursive function that # constructs Segment Tree for # array[ss..se]. si is index of # current node in segment tree st def constructSTUtil(arr, ss, se, st, si): # If there is one # element in array, store # it in current node of # segment tree and return if (ss = = se): if (isArmstrong(arr[ss])): st[si] = arr[ss] else : st[si] = - 1 return st[si] # If there are more than # one elements, then # recur for left and right # subtrees and store the # max of values in this node mid = getMid(ss, se) st[si] = max (constructSTUtil(arr, ss, mid, st, si * 2 + 1 ), constructSTUtil(arr, mid + 1 , se, st, si * 2 + 2 )) return st[si] ''' Function to construct a segment tree from given array. This function allocates memory for segment tree.''' def constructST(arr, n): # Height of segment tree x = int (math.ceil(math.log2(n))) # Maximum size of segment tree max_size = 2 * int (math. pow ( 2 , x)) - 1 # Allocate memory st = [ 0 for _ in range (max_size)] # Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 ) # Return the constructed # segment tree return st # Driver code if __name__ = = "__main__" : arr = [ 192 , 113 , 535 , 7 , 19 , 111 ] n = len (arr) # Build segment tree from # given array st = constructST(arr, n) # Print max of values in array # from index 1 to 3 print ( "Maximum armstrong number in given range = {}" . format ( getMax(st, n, 1 , 3 ))) # Update: set arr[1] = 153 and update # corresponding segment tree nodes. updateValue(arr, st, 0 , n - 1 , 1 , 153 , 0 ) # Find max after the value is updated print ( "Updated Maximum armstrong number in given range = {}" . format ( getMax(st, n, 1 , 3 ))) # This code is contributed by sanjeev2552 |
C#
// C# code to implement // the above approach using System; class GFG{ // A utility function to get the // middle index of given range. static int getMid( int s, int e) { return s + (e - s) / 2; } // Function that return true // if num is armstrong // else return false static bool isArmstrong( int x) { int n = String.Join( "" , x).Length; int sum1 = 0; int temp = x; while (temp > 0) { int digit = temp % 10; sum1 += ( int )Math.Pow(digit, n); temp /= 10; } if (sum1 == x) return true ; return false ; } /* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st.Pointer to segment tree node.Index of current node in the segment tree . ss & se.Starting and ending indexes of the segment represented by current node, i.e., st[node] l & r.Starting and ending indexes of range query */ static int MaxUtil( int []st, int ss, int se, int l, int r, int node) { // If segment of this node is // completely part of given range, // then return the max of segment. if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return -1; // If segment of this node is // partially the part of given // range int mid = getMid(ss, se); return Math.Max(MaxUtil(st, ss, mid, l, r, 2 * node), MaxUtil(st, mid + 1, se, l, r, 2 * node + 1)); } /* A recursive function to update the nodes which have the given the index in their range. The following are parameters st, ss and se are same as defined above index.index of the element to be updated.*/ static void updateValue( int []arr, int []st, int ss, int se, int index, int value, int node) { if (index < ss || index > se) { Console.Write( "Invalid Input" + "\n" ); return ; } if (ss == se) { // update value in array // and in segment tree arr[index] = value; if (isArmstrong(value)) st[node] = value; else st[node] = -1; } else { int mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node); else updateValue(arr, st, mid + 1, se, index, value, 2 * node + 1); st[node] = Math.Max(st[2 * node + 1], st[2 * node + 2]); } return ; } // Return max of elements in // range from index // l (query start) to r (query end). static int getMax( int []st, int n, int l, int r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { Console.Write( "Invalid Input" ); return -1; } return MaxUtil(st, 0, n - 1, l, r, 0); } // A recursive function that // constructs Segment Tree for // array[ss..se]. si is index of // current node in segment tree st static int constructSTUtil( int []arr, int ss, int se, int []st, int si) { // If there is one // element in array, store // it in current node of // segment tree and return if (ss == se) { if (isArmstrong(arr[ss])) st[si] = arr[ss]; else st[si] = -1; return st[si]; } // If there are more than // one elements, then // recur for left and right // subtrees and store the // max of values in this node int mid = getMid(ss, se); st[si] = Math.Max(constructSTUtil(arr, ss, mid, st, si * 2), constructSTUtil(arr, mid + 1, se, st, si * 2 + 1)); return st[si]; } /* Function to construct a segment tree from given array. This function allocates memory for segment tree.*/ static int [] constructST( int []arr, int n) { // Height of segment tree int x = ( int )(Math.Ceiling(Math.Log(n))); // Maximum size of segment tree int max_size = 2 * ( int )Math.Pow(2, x) - 1; // Allocate memory int []st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed // segment tree return st; } // Driver code public static void Main(String[] args) { int []arr = {192, 113, 535, 7, 19, 111}; int n = arr.Length; // Build segment tree from // given array int [] st = constructST(arr, n); // Print max of values in array // from index 1 to 3 Console.Write( "Maximum armstrong " + "number in given range = " + getMax(st, n, 1, 3) + "\n" ); // Update: set arr[1] = 153 and update // corresponding segment tree nodes. updateValue(arr, st, 0, n - 1, 1, 153, 0); // Find max after the value is updated Console.Write( "Updated Maximum armstrong " + "number in given range = " + getMax(st, n, 1, 3) + "\n" ); } } // This code is contributed by shikhasingrajput |
Javascript
<script> // JavaScript code to implement // the above approach // A utility function to get the // middle index of given range. function getMid(s,e) { return s + Math.floor((e - s) / 2); } // Function that return true // if num is armstrong // else return false function isArmstrong(x) { let n = (x).toString().length; let sum1 = 0; let temp = x; while (temp > 0) { let digit = temp % 10; sum1 += Math.pow(digit, n); temp = Math.floor(temp/10); } if (sum1 == x) return true ; return false ; } /* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st.Pointer to segment tree node.Index of current node in the segment tree . ss & se.Starting and ending indexes of the segment represented by current node, i.e., st[node] l & r.Starting and ending indexes of range query */ function MaxUtil(st,ss,se,l,r,node) { // If segment of this node is // completely part of given range, // then return the max of segment. if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return -1; // If segment of this node is // partially the part of given // range let mid = getMid(ss, se); return Math.max(MaxUtil(st, ss, mid, l, r, 2 * node ), MaxUtil(st, mid + 1, se, l, r, 2 * node + 1)); } /* A recursive function to update the nodes which have the given the index in their range. The following are parameters st, ss and se are same as defined above index.index of the element to be updated.*/ function updateValue(arr,st,ss,se,index,value,node) { if (index < ss || index > se) { document.write( "Invalid Input" + "<br>" ); return ; } if (ss == se) { // update value in array // and in segment tree arr[index] = value; if (isArmstrong(value)) st[node] = value; else st[node] = -1; } else { let mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node); else updateValue(arr, st, mid + 1, se, index, value, 2 * node +1); st[node] = Math.max(st[2 * node + 1], st[2 * node + 2]); } return ; } // Return max of elements in // range from index // l (query start) to r (query end). function getMax(st,n,l,r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { document.write( "Invalid Input" ); return -1; } return MaxUtil(st, 0, n - 1, l, r, 0); } // A recursive function that // constructs Segment Tree for // array[ss..se]. si is index of // current node in segment tree st function constructSTUtil(arr,ss,se,st,si) { // If there is one // element in array, store // it in current node of // segment tree and return if (ss == se) { if (isArmstrong(arr[ss])) st[si] = arr[ss]; else st[si] = -1; return st[si]; } // If there are more than // one elements, then // recur for left and right // subtrees and store the // max of values in this node let mid = getMid(ss, se); st[si] = Math.max(constructSTUtil(arr, ss, mid, st, si * 2 ), constructSTUtil(arr, mid + 1, se, st, si * 2 + 1)); return st[si]; } /* Function to construct a segment tree from given array. This function allocates memory for segment tree.*/ function constructST(arr,n) { // Height of segment tree let x = (Math.ceil(Math.log(n))); // Maximum size of segment tree let max_size = 2 * Math.pow(2, x) - 1; // Allocate memory let st = new Array(max_size); // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed // segment tree return st; } // Driver code let arr=[192, 113, 535, 7, 19, 111]; let n = arr.length; // Build segment tree from // given array let st = constructST(arr, n); // Print max of values in array // from index 1 to 3 document.write( "Maximum armstrong " + "number in given range = " + getMax(st, n, 1, 3) + "<br>" ); // Update: set arr[1] = 153 and update // corresponding segment tree nodes. updateValue(arr, st, 0, n - 1, 1, 153, 0); // Find max after the value is updated document.write( "Updated Maximum armstrong " + "number in given range = " + getMax(st, n, 1, 3) + "<br>" ); // This code is contributed by patel2127 </script> |
Maximum armstrong number in given range = 7 Updated Maximum armstrong number in given range = 153
Time Complexity: The time complexity of each query and update is O(log N) and that of building the segment tree is O(N)
Please Login to comment...