Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Append two elements to make the array satisfy the given condition

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] of non-negative integers, let’s define X as the XOR of all the array elements and S as the sum of all the array elements. The task is to find two elements such that when they are appended to the array S = 2 * X is satisfied for the updated array.
 

Examples: 

Input: arr[] = {1, 7} 
Output: 6 14 
Initially S = 8, and X = 6. After appending 6 
and 14, S_NEW = (8 + 6 + 14) = 28 
and X_NEW = (6 ^ 6 ^ 14) = 14 
Clearly, S_NEW = 2 * X_NEW
Input: arr[] = {1, 3} 
Output: 2 6

Naive approach: Run two nested loops from 1 to S and check for each pair whether it satisfies the condition or not. This will take O(S2) time.
Efficient approach: It can be observed that if X and S + X are appended to the array then S_NEW = 2 * (S + X) and X_NEW = S + X which satisfy the given condition.
 

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required numbers
void findNums(int arr[], int n)
{
 
    // Find the sum and xor
    int S = 0, X = 0;
    for (int i = 0; i < n; i++) {
        S += arr[i];
        X ^= arr[i];
    }
 
    // Print the required elements
    cout << X << " " << (X + S);
}
 
// Driver code
int main()
{
    int arr[] = { 1, 7 };
    int n = sizeof(arr) / sizeof(int);
 
    findNums(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to find the required numbers
    static void findNums(int arr[], int n)
    {
     
        // Find the sum and xor
        int S = 0, X = 0;
        for (int i = 0; i < n; i++)
        {
            S += arr[i];
            X ^= arr[i];
        }
     
        // Print the required elements
        System.out.println(X + " " + (X + S));
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 1, 7 };
        int n = arr.length;
     
        findNums(arr, n);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to find the required numbers
def findNums(arr, n) :
 
    # Find the sum and xor
    S = 0; X = 0;
    for i in range(n) :
        S += arr[i];
        X ^= arr[i];
 
    # Print the required elements
    print(X, X + S);
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 7 ];
    n = len(arr);
 
    findNums(arr, n);
     
# This code is contributed by AnkiRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to find the required numbers
    static void findNums(int []arr, int n)
    {
     
        // Find the sum and xor
        int S = 0, X = 0;
        for (int i = 0; i < n; i++)
        {
            S += arr[i];
            X ^= arr[i];
        }
     
        // Print the required elements
        Console.WriteLine(X + " " + (X + S));
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 7 };
        int n = arr.Length;
     
        findNums(arr, n);
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
// javascript implementation of the approach    
// Function to find the required numbers
    function findNums(arr , n) {
 
        // Find the sum and xor
        var S = 0, X = 0;
        for (i = 0; i < n; i++) {
            S += arr[i];
            X ^= arr[i];
        }
 
        // Print the required elements
        document.write(X + " " + (X + S));
    }
 
    // Driver code
     
        var arr = [ 1, 7 ];
        var n = arr.length;
 
        findNums(arr, n);
 
// This code contributed by gauravrajput1
</script>


Output: 

6 14

 

Time Complexity: O(n)

Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 25 Jan, 2022
Like Article
Save Article
Similar Reads
Related Tutorials