Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

A Time Complexity Question

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

What is the time complexity of following function fun()? Assume that log(x) returns log value in base 2. 

C++




void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            cout << "GeeksforGeeks";
}
 
// This code is contributed by SHUBHAMSINGH10.


C




void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            printf("GeeksforGeeks");
}


Java




static void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            System.out.printf("GeeksforGeeks");
}
 
// This code is contributed by umadevi9616


Python3




import math
def fun():
    i = 0
    j = 0
    for i in range(1, n + 1):
        for j in range(1,math.log(i) + 1):
            print("GeeksforGeeks")
 
# This code is contributed by SHUBHAMSINGH10.


C#




static void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            Console.Write("GeeksforGeeks");
}
 
// This code is contributed by umadevi9616


Javascript




const fun()
{
    let i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= Math.log(i); j++)
            document.write("GeeksforGeeks");
}
 
// This code is contributed by SHUBHAMSINGH10.


Time Complexity of the above function can be written as θ(log 1) + θ(log 2) + θ(log 3) + . . . . + θ(log n) which is θ(log n!)
Order of growth of ‘log n!’ and ‘n log n’ is same for large values of n, i.e., θ(log n!) = θ(n log n). So time complexity of fun() is θ(n log n).
The expression θ(log n!) = θ(n log n) can be easily derived from following Stirling’s approximation (or Stirling’s formula)

log n! = n*log n - n = O(n*log(n)) 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Sources: 
http://en.wikipedia.org/wiki/Stirling%27s_approximation


My Personal Notes arrow_drop_up
Last Updated : 27 Dec, 2021
Like Article
Save Article
Similar Reads
Related Tutorials