# 3D Visualisation of Quick Sort using Matplotlib in Python

• Last Updated : 19 Jan, 2022

Visualizing algorithms makes it easier to understand them by analyzing and comparing the number of operations that took place to compare and swap the elements. 3D visualization of algorithms is less common, for this we will use Matplotlib to plot bar graphs and animate them to represent the elements of the array.

Let’s see the 3D Visualizations of Quick Sort:

## Approach:

1. We will generate an array with random elements.
2. The algorithm will be called on that array and yield statement will be used instead of return statement for visualization purposes.
3. We will yield the current states of the array after comparing and swapping. Hence, the algorithm will return a generator object.
4. Matplotlib animation will be used to visualize the comparing and swapping of the array.
5. We will then plot the graph, which will return an object of Poly3dCollection using which further animation will be done.

Below is the implementation:

## Python3

 `# importing all required  modules` `import` `matplotlib.pyplot as plt` `from` `matplotlib.animation ``import` `FuncAnimation` `from` `mpl_toolkits.mplot3d ``import` `axes3d` `import` `matplotlib as mp` `import` `numpy as np` `import` `random`   `# quicksort function` `def` `quicksort(a, l, r):` `    ``if` `l>``=``r:` `        ``return` `    ``x``=``a[l]` `    ``j``=``l` `    ``for` `i ``in` `range``(l``+``1``, r``+``1``):` `        ``if` `a[i]<``=``x:` `            ``j``+``=``1` `            ``a[j], a[i] ``=` `a[i], a[j]` `        ``yield` `a` `    ``a[l], a[j]``=``a[j], a[l]` `    ``yield` `a` `    `  `    ``# yield from statement used to yield ` `    ``# the array after dividing` `    ``yield` `from` `quicksort(a, l, j``-``1``)` `    ``yield` `from` `quicksort(a, j``+``1``, r)`   `# function to plot bars` `def` `showGraph():` `  `  `    ``# for random unique values` `    ``n``=``int``(``input``(``"enter array size\n"``))` `    ``a``=``[i ``for` `i ``in` `range``(``1``, n``+``1``)]` `    ``random.shuffle(a)` `    ``datasetName``=``'Random'` `    `  `    ``# generator object returned` `    ``# by the function` `    ``generator ``=` `quicksort(a, ``0``, n``-``1``)` `    `  `    ``algoName``=``'Quick Sort'` `    `  `    ``# style of the chart` `    ``plt.style.use(``'fivethirtyeight'``)` `    `  `    ``# set colors of the bars` `    ``data_normalizer ``=` `mp.colors.Normalize()` `    `  `    ``color_map ``=` `mp.colors.LinearSegmentedColormap(` `        ``"my_map"``,` `        ``{` `            ``"red"``: [(``0``, ``1.0``, ``1.0``),` `                    ``(``1.0``, .``5``, .``5``)],` `            ``"green"``: [(``0``, ``0.5``, ``0.5``),` `                      ``(``1.0``, ``0``, ``0``)],` `            ``"blue"``: [(``0``, ``0.50``, ``0.5``),` `                     ``(``1.0``, ``0``, ``0``)]` `        ``}` `    ``)`   `    ``fig ``=` `plt.figure()` `    `  `    ``ax ``=` `fig.add_subplot(projection``=``'3d'``)` `    `  `    ``# z values and positions of the bars ` `    ``z ``=` `np.zeros(n)` `    ``dx ``=` `np.ones(n)` `    ``dy ``=` `np.ones(n)` `    `  `    ``dz ``=` `[i ``for` `i ``in` `range``(``len``(a))]` `    ``# Poly3dCollection returned ` `    ``# into variable rects` `    ``rects ``=` `ax.bar3d(``range``(``len``(a)), a, z, dx, ` `                     ``dy, dz,` `                     ``color ``=` `color_map(data_normalizer(``range``(n))))` `    `  `    ``# setting and x and y limits` `    ``# equal to the length of the array` `    ``ax.set_xlim(``0``, ``len``(a))` `    ``ax.set_ylim(``0``, ``int``(``1.1``*``len``(a)))` `    `  `    ``ax.set_title(``"ALGORITHM : "``+``algoName``+``"\n"``+``"DATA SET : "``+``datasetName, ` `                 ``fontdict``=``{``'fontsize'``: ``13``, ``'fontweight'``: ``'medium'``,` `                           ``'color'` `: ``'#E4365D'``})` `    ``# text to plot on the chart` `    ``text ``=` `ax.text2D(``0.1``,``0.95``, "", horizontalalignment ``=` `'center'``,` `                     ``verticalalignment ``=` `'center'``, ` `                     ``transform``=``ax.transAxes,` `                     ``color ``=` `"#E4365D"``)` `    ``iteration ``=` `[``0``]`   `    ``# animation function to be ` `    ``# repeatedly called` `    ``def` `animate(A, rects, iteration):` `      `  `        ``# to clear the bars from ` `        ``# the Poly3DCollection object` `        ``ax.collections.clear()` `        ``ax.bar3d(``range``(``len``(a)), A, z, dx, ` `                 ``dy, dz, ` `                 ``color ``=` `color_map(data_normalizer(``range``(n))))` `        `  `        ``iteration[``0``] ``+``=` `1` `        ``text.set_text(``"iterations : {}"``.``format``(iteration[``0``]))` `            `  `    ``# animate function is called here ` `    ``# and the generator object is passed` `    ``anim ``=` `FuncAnimation(fig, func``=``animate,` `        ``fargs ``=` `(rects, iteration), ` `       ``frames ``=` `generator, interval``=``50``,` `        ``repeat``=``False``)` `    `  `    ``# show the plot` `    ``plt.show()`   `# function call` `showGraph()`

Output:

For array size 20

My Personal Notes arrow_drop_up
Recommended Articles
Page :