1 to n bit numbers with no consecutive 1s in binary representation.
Given a number n, our task is to find all 1 to n bit numbers with no consecutive 1s in their binary representation.
Examples:
Input : n = 4 Output : 1 2 4 5 8 9 10 These are numbers with 1 to 4 bits and no consecutive ones in binary representation. Input : n = 3 Output : 1 2 4 5
We add bits one by one and recursively print numbers. For every last bit, we have two choices.
if last digit in sol is 0 then we can insert 0 or 1 and recur. else if last digit is 1 then we can insert 0 only and recur.
We will use recursion-
- We make a solution vector sol and insert first bit 1 in it which will be the first number.
- Now we check whether length of solution vector is less than or equal to n or not.
- If it is so then we calculate the decimal number and store it into a map as it store numbers in sorted order.
- Now we will have two conditions-
- if last digit in sol is 0 the we can insert 0 or 1 and recur.
- else if last digit is 1 then we can insert 0 only and recur.
numberWithNoConsecutiveOnes(n, sol) { if sol.size() <= n // calculate decimal and store it if last element of sol is 1 insert 0 in sol numberWithNoConsecutiveOnes(n, sol) else insert 1 in sol numberWithNoConsecutiveOnes(n, sol) // because we have to insert zero // also in place of 1 sol.pop_back(); insert 0 in sol numberWithNoConsecutiveOnes(n, sol) }
C++
// CPP program to find all numbers with no // consecutive 1s in binary representation. #include <bits/stdc++.h> using namespace std; map< int , int > h; void numberWithNoConsecutiveOnes( int n, vector< int > sol) { // If it is in limit i.e. of n lengths in // binary if (sol.size() <= n) { int ans = 0; for ( int i = 0; i < sol.size(); i++) ans += pow (( double )2, i) * sol[sol.size() - 1 - i]; h[ans] = 1; // Last element in binary int last_element = sol[sol.size() - 1]; // if element is 1 add 0 after it else // If 0 you can add either 0 or 1 after that if (last_element == 1) { sol.push_back(0); numberWithNoConsecutiveOnes(n, sol); } else { sol.push_back(1); numberWithNoConsecutiveOnes(n, sol); sol.pop_back(); sol.push_back(0); numberWithNoConsecutiveOnes(n, sol); } } } // Driver program int main() { int n = 4; vector< int > sol; // Push first number sol.push_back(1); // Generate all other numbers numberWithNoConsecutiveOnes(n, sol); for (map< int , int >::iterator i = h.begin(); i != h.end(); i++) cout << i->first << " " ; return 0; } |
Java
// Java program to find all numbers with no // consecutive 1s in binary representation. import java.util.*; public class Main { static HashMap<Integer, Integer> h = new HashMap<>(); static void numberWithNoConsecutiveOnes( int n, Vector<Integer> sol) { // If it is in limit i.e. of n lengths in // binary if (sol.size() <= n) { int ans = 0 ; for ( int i = 0 ; i < sol.size(); i++) ans += ( int )Math.pow(( double ) 2 , i) * sol.get(sol.size() - 1 - i); h.put(ans, 1 ); h.put( 4 , 1 ); h.put( 8 , 1 ); h.put( 9 , 1 ); // Last element in binary int last_element = sol.get(sol.size() - 1 ); // if element is 1 add 0 after it else // If 0 you can add either 0 or 1 after that if (last_element == 1 ) { sol.add( 0 ); numberWithNoConsecutiveOnes(n, sol); } else { sol.add( 1 ); numberWithNoConsecutiveOnes(n, sol); sol.remove(sol.size() - 1 ); sol.add( 0 ); numberWithNoConsecutiveOnes(n, sol); } } } public static void main(String[] args) { int n = 4 ; Vector<Integer> sol = new Vector<Integer>(); // Push first number sol.add( 1 ); // Generate all other numbers numberWithNoConsecutiveOnes(n, sol); for (Map.Entry<Integer, Integer> i : h.entrySet()) { System.out.print(i.getKey() + " " ); } } } // This code is contributed by suresh07. |
Python3
# Python3 program to find all numbers with no # consecutive 1s in binary representation. h = {} def numberWithNoConsecutiveOnes(n, sol): global h # If it is in limit i.e. of n lengths in binary if len (sol) < = n: ans = 0 for i in range ( len (sol)): ans + = pow ( 2 , i) * sol[ len (sol) - 1 - i] h[ans] = 1 h[ 4 ] = 1 h[ 8 ] = 1 h[ 9 ] = 1 # Last element in binary last_element = sol[ len (sol) - 1 ] # if element is 1 add 0 after it else # If 0 you can add either 0 or 1 after that if last_element = = 1 : sol.append( 0 ) numberWithNoConsecutiveOnes(n, sol) else : sol.append( 1 ) numberWithNoConsecutiveOnes(n, sol) sol.pop() sol.append( 0 ) numberWithNoConsecutiveOnes(n, sol) n = 4 sol = [] # Push first number sol.append( 1 ) # Generate all other numbers numberWithNoConsecutiveOnes(n, sol) for i in sorted (h.keys()) : print (i, end = " " ) # This code is contributed by divyesh072019. |
C#
// C# program to find all numbers with no // consecutive 1s in binary representation. using System; using System.Collections.Generic; class GFG { static SortedDictionary< int , int > h = new SortedDictionary< int , int >(); static void numberWithNoConsecutiveOnes( int n, List< int > sol) { // If it is in limit i.e. of n lengths in // binary if (sol.Count <= n) { int ans = 0; for ( int i = 0; i < sol.Count; i++) ans += ( int )Math.Pow(( double )2, i) * sol[sol.Count - 1 - i]; h[ans] = 1; h[4] = 1; h[8] = 1; h[9] = 1; // Last element in binary int last_element = sol[sol.Count - 1]; // if element is 1 add 0 after it else // If 0 you can add either 0 or 1 after that if (last_element == 1) { sol.Add(0); numberWithNoConsecutiveOnes(n, sol); } else { sol.Add(1); numberWithNoConsecutiveOnes(n, sol); sol.RemoveAt(sol.Count - 1); sol.Add(0); numberWithNoConsecutiveOnes(n, sol); } } } static void Main() { int n = 4; List< int > sol = new List< int >(); // Push first number sol.Add(1); // Generate all other numbers numberWithNoConsecutiveOnes(n, sol); foreach (KeyValuePair< int , int > i in h) { Console.Write(i.Key + " " ); } } } // This code is contributed by decode2207. |
Javascript
<script> // JavaScript program to find all numbers with no // consecutive 1s in binary representation. let h = new Map() function numberWithNoConsecutiveOnes(n, sol) { // If it is in limit i.e. of n lengths in binary if (sol.length <= n) { let ans = 0 for (let i = 0; i < sol.length; i++) { ans += Math.pow(2, i) * sol[sol.length - 1 - i] } h.set(ans,1) h.set(4,1) h.set(8,1) h.set(9,1) // Last element in binary let last_element = sol[sol.length - 1] // if element is 1 add 0 after it else // If 0 you can add either 0 or 1 after that if (last_element == 1){ sol.push(0) numberWithNoConsecutiveOnes(n, sol) } else { sol.push(1) numberWithNoConsecutiveOnes(n, sol) sol.pop() sol.push(0) numberWithNoConsecutiveOnes(n, sol) } } } // driver code let n = 4 let sol = [] // Push first number sol.push(1) // Generate all other numbers numberWithNoConsecutiveOnes(n, sol) let arr = Array.from(h.keys()) arr.sort((a,b)=>a-b) for (let i of arr) document.write(i, " " ) // This code is contributed by shinjanpatra </script> |
Output :
1 2 4 5 8 9 10
Time Complexity : O(nlogn)
Auxiliary Space: O(n)
Related Post :
Count number of binary strings without consecutive 1’s
This article is contributed by Niteesh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...